Skip to content

Data model

sleap-io implements the core data structures used in SLEAP for storing data related to multi-instance pose tracking, including for annotation, training and inference.

sleap_io.Labels

Pose data for a set of videos that have user labels and/or predictions.

Attributes:

Name Type Description
labeled_frames list[LabeledFrame]

A list of LabeledFrames that are associated with this dataset.

videos list[Video]

A list of Videos that are associated with this dataset. Videos do not need to have corresponding LabeledFrames if they do not have any labels or predictions yet.

skeletons list[Skeleton]

A list of Skeletons that are associated with this dataset. This should generally only contain a single skeleton.

tracks list[Track]

A list of Tracks that are associated with this dataset.

suggestions list[SuggestionFrame]

A list of SuggestionFrames that are associated with this dataset.

provenance dict[str, Any]

Dictionary of arbitrary metadata providing additional information about where the dataset came from.

Notes

Videos in contain LabeledFrames, and Skeletons and Tracks in contained Instances are added to the respective lists automatically.

Methods:

Name Description
__attrs_post_init__

Append videos, skeletons, and tracks seen in labeled_frames to Labels.

__getitem__

Return one or more labeled frames based on indexing criteria.

__iter__

Iterate over labeled_frames list when calling iter method on Labels.

__len__

Return number of labeled frames.

__repr__

Return a readable representation of the labels.

__str__

Return a readable representation of the labels.

append

Append a labeled frame to the labels.

clean

Remove empty frames, unused skeletons, tracks and videos.

extend

Append a labeled frame to the labels.

extract

Extract a set of frames into a new Labels object.

find

Search for labeled frames given video and/or frame index.

make_training_splits

Make splits for training with embedded images.

numpy

Construct a numpy array from instance points.

remove_nodes

Remove nodes from the skeleton.

remove_predictions

Remove all predicted instances from the labels.

rename_nodes

Rename nodes in the skeleton.

reorder_nodes

Reorder nodes in the skeleton.

replace_filenames

Replace video filenames.

replace_skeleton

Replace the skeleton in the labels.

replace_videos

Replace videos and update all references.

save

Save labels to file in specified format.

split

Separate the labels into random splits.

trim

Trim the labels to a subset of frames and videos accordingly.

update

Update data structures based on contents.

Attributes:

Name Type Description
instances Iterator[Instance]

Return an iterator over all instances within all labeled frames.

skeleton Skeleton

Return the skeleton if there is only a single skeleton in the labels.

user_labeled_frames list[LabeledFrame]

Return all labeled frames with user (non-predicted) instances.

video Video

Return the video if there is only a single video in the labels.

Source code in sleap_io/model/labels.py
@define
class Labels:
    """Pose data for a set of videos that have user labels and/or predictions.

    Attributes:
        labeled_frames: A list of `LabeledFrame`s that are associated with this dataset.
        videos: A list of `Video`s that are associated with this dataset. Videos do not
            need to have corresponding `LabeledFrame`s if they do not have any
            labels or predictions yet.
        skeletons: A list of `Skeleton`s that are associated with this dataset. This
            should generally only contain a single skeleton.
        tracks: A list of `Track`s that are associated with this dataset.
        suggestions: A list of `SuggestionFrame`s that are associated with this dataset.
        provenance: Dictionary of arbitrary metadata providing additional information
            about where the dataset came from.

    Notes:
        `Video`s in contain `LabeledFrame`s, and `Skeleton`s and `Track`s in contained
        `Instance`s are added to the respective lists automatically.
    """

    labeled_frames: list[LabeledFrame] = field(factory=list)
    videos: list[Video] = field(factory=list)
    skeletons: list[Skeleton] = field(factory=list)
    tracks: list[Track] = field(factory=list)
    suggestions: list[SuggestionFrame] = field(factory=list)
    provenance: dict[str, Any] = field(factory=dict)

    def __attrs_post_init__(self):
        """Append videos, skeletons, and tracks seen in `labeled_frames` to `Labels`."""
        self.update()

    def update(self):
        """Update data structures based on contents.

        This function will update the list of skeletons, videos and tracks from the
        labeled frames, instances and suggestions.
        """
        for lf in self.labeled_frames:
            if lf.video not in self.videos:
                self.videos.append(lf.video)

            for inst in lf:
                if inst.skeleton not in self.skeletons:
                    self.skeletons.append(inst.skeleton)

                if inst.track is not None and inst.track not in self.tracks:
                    self.tracks.append(inst.track)

        for sf in self.suggestions:
            if sf.video not in self.videos:
                self.videos.append(sf.video)

    def __getitem__(
        self, key: int | slice | list[int] | np.ndarray | tuple[Video, int]
    ) -> list[LabeledFrame] | LabeledFrame:
        """Return one or more labeled frames based on indexing criteria."""
        if type(key) == int:
            return self.labeled_frames[key]
        elif type(key) == slice:
            return [self.labeled_frames[i] for i in range(*key.indices(len(self)))]
        elif type(key) == list:
            return [self.labeled_frames[i] for i in key]
        elif isinstance(key, np.ndarray):
            return [self.labeled_frames[i] for i in key.tolist()]
        elif type(key) == tuple and len(key) == 2:
            video, frame_idx = key
            res = self.find(video, frame_idx)
            if len(res) == 1:
                return res[0]
            elif len(res) == 0:
                raise IndexError(
                    f"No labeled frames found for video {video} and "
                    f"frame index {frame_idx}."
                )
        elif type(key) == Video:
            res = self.find(key)
            if len(res) == 0:
                raise IndexError(f"No labeled frames found for video {key}.")
            return res
        else:
            raise IndexError(f"Invalid indexing argument for labels: {key}")

    def __iter__(self):
        """Iterate over `labeled_frames` list when calling iter method on `Labels`."""
        return iter(self.labeled_frames)

    def __len__(self) -> int:
        """Return number of labeled frames."""
        return len(self.labeled_frames)

    def __repr__(self) -> str:
        """Return a readable representation of the labels."""
        return (
            "Labels("
            f"labeled_frames={len(self.labeled_frames)}, "
            f"videos={len(self.videos)}, "
            f"skeletons={len(self.skeletons)}, "
            f"tracks={len(self.tracks)}, "
            f"suggestions={len(self.suggestions)}"
            ")"
        )

    def __str__(self) -> str:
        """Return a readable representation of the labels."""
        return self.__repr__()

    def append(self, lf: LabeledFrame, update: bool = True):
        """Append a labeled frame to the labels.

        Args:
            lf: A labeled frame to add to the labels.
            update: If `True` (the default), update list of videos, tracks and
                skeletons from the contents.
        """
        self.labeled_frames.append(lf)

        if update:
            if lf.video not in self.videos:
                self.videos.append(lf.video)

            for inst in lf:
                if inst.skeleton not in self.skeletons:
                    self.skeletons.append(inst.skeleton)

                if inst.track is not None and inst.track not in self.tracks:
                    self.tracks.append(inst.track)

    def extend(self, lfs: list[LabeledFrame], update: bool = True):
        """Append a labeled frame to the labels.

        Args:
            lfs: A list of labeled frames to add to the labels.
            update: If `True` (the default), update list of videos, tracks and
                skeletons from the contents.
        """
        self.labeled_frames.extend(lfs)

        if update:
            for lf in lfs:
                if lf.video not in self.videos:
                    self.videos.append(lf.video)

                for inst in lf:
                    if inst.skeleton not in self.skeletons:
                        self.skeletons.append(inst.skeleton)

                    if inst.track is not None and inst.track not in self.tracks:
                        self.tracks.append(inst.track)

    def numpy(
        self,
        video: Optional[Union[Video, int]] = None,
        all_frames: bool = True,
        untracked: bool = False,
        return_confidence: bool = False,
    ) -> np.ndarray:
        """Construct a numpy array from instance points.

        Args:
            video: Video or video index to convert to numpy arrays. If `None` (the
                default), uses the first video.
            untracked: If `False` (the default), include only instances that have a
                track assignment. If `True`, includes all instances in each frame in
                arbitrary order.
            return_confidence: If `False` (the default), only return points of nodes. If
                `True`, return the points and scores of nodes.

        Returns:
            An array of tracks of shape `(n_frames, n_tracks, n_nodes, 2)` if
            `return_confidence` is `False`. Otherwise returned shape is
            `(n_frames, n_tracks, n_nodes, 3)` if `return_confidence` is `True`.

            Missing data will be replaced with `np.nan`.

            If this is a single instance project, a track does not need to be assigned.

            Only predicted instances (NOT user instances) will be returned.

        Notes:
            This method assumes that instances have tracks assigned and is intended to
            function primarily for single-video prediction results.
        """
        # Get labeled frames for specified video.
        if video is None:
            video = 0
        if type(video) == int:
            video = self.videos[video]
        lfs = [lf for lf in self.labeled_frames if lf.video == video]

        # Figure out frame index range.
        first_frame, last_frame = 0, 0
        for lf in lfs:
            first_frame = min(first_frame, lf.frame_idx)
            last_frame = max(last_frame, lf.frame_idx)

        # Figure out the number of tracks based on number of instances in each frame.
        # First, let's check the max number of predicted instances (regardless of
        # whether they're tracked.
        n_preds = 0
        for lf in lfs:
            n_pred_instances = len(lf.predicted_instances)
            n_preds = max(n_preds, n_pred_instances)

        # Case 1: We don't care about order because there's only 1 instance per frame,
        # or we're considering untracked instances.
        untracked = untracked or n_preds == 1
        if untracked:
            n_tracks = n_preds
        else:
            # Case 2: We're considering only tracked instances.
            n_tracks = len(self.tracks)

        n_frames = int(last_frame - first_frame + 1)
        skeleton = self.skeletons[-1]  # Assume project only uses last skeleton
        n_nodes = len(skeleton.nodes)

        if return_confidence:
            tracks = np.full((n_frames, n_tracks, n_nodes, 3), np.nan, dtype="float32")
        else:
            tracks = np.full((n_frames, n_tracks, n_nodes, 2), np.nan, dtype="float32")
        for lf in lfs:
            i = int(lf.frame_idx - first_frame)
            if untracked:
                for j, inst in enumerate(lf.predicted_instances):
                    tracks[i, j] = inst.numpy(scores=return_confidence)
            else:
                tracked_instances = [
                    inst
                    for inst in lf.instances
                    if type(inst) == PredictedInstance and inst.track is not None
                ]
                for inst in tracked_instances:
                    j = self.tracks.index(inst.track)  # type: ignore[arg-type]
                    tracks[i, j] = inst.numpy(scores=return_confidence)

        return tracks

    @property
    def video(self) -> Video:
        """Return the video if there is only a single video in the labels."""
        if len(self.videos) == 0:
            raise ValueError("There are no videos in the labels.")
        elif len(self.videos) == 1:
            return self.videos[0]
        else:
            raise ValueError(
                "Labels.video can only be used when there is only a single video saved "
                "in the labels. Use Labels.videos instead."
            )

    @property
    def skeleton(self) -> Skeleton:
        """Return the skeleton if there is only a single skeleton in the labels."""
        if len(self.skeletons) == 0:
            raise ValueError("There are no skeletons in the labels.")
        elif len(self.skeletons) == 1:
            return self.skeletons[0]
        else:
            raise ValueError(
                "Labels.skeleton can only be used when there is only a single skeleton "
                "saved in the labels. Use Labels.skeletons instead."
            )

    def find(
        self,
        video: Video,
        frame_idx: int | list[int] | None = None,
        return_new: bool = False,
    ) -> list[LabeledFrame]:
        """Search for labeled frames given video and/or frame index.

        Args:
            video: A `Video` that is associated with the project.
            frame_idx: The frame index (or indices) which we want to find in the video.
                If a range is specified, we'll return all frames with indices in that
                range. If not specific, then we'll return all labeled frames for video.
            return_new: Whether to return singleton of new and empty `LabeledFrame` if
                none are found in project.

        Returns:
            List of `LabeledFrame` objects that match the criteria.

            The list will be empty if no matches found, unless return_new is True, in
            which case it contains new (empty) `LabeledFrame` objects with `video` and
            `frame_index` set.
        """
        results = []

        if frame_idx is None:
            for lf in self.labeled_frames:
                if lf.video == video:
                    results.append(lf)
            return results

        if np.isscalar(frame_idx):
            frame_idx = np.array(frame_idx).reshape(-1)

        for frame_ind in frame_idx:
            result = None
            for lf in self.labeled_frames:
                if lf.video == video and lf.frame_idx == frame_ind:
                    result = lf
                    results.append(result)
                    break
            if result is None and return_new:
                results.append(LabeledFrame(video=video, frame_idx=frame_ind))

        return results

    def save(
        self,
        filename: str,
        format: Optional[str] = None,
        embed: bool | str | list[tuple[Video, int]] | None = None,
        **kwargs,
    ):
        """Save labels to file in specified format.

        Args:
            filename: Path to save labels to.
            format: The format to save the labels in. If `None`, the format will be
                inferred from the file extension. Available formats are `"slp"`,
                `"nwb"`, `"labelstudio"`, and `"jabs"`.
            embed: Frames to embed in the saved labels file. One of `None`, `True`,
                `"all"`, `"user"`, `"suggestions"`, `"user+suggestions"`, `"source"` or
                list of tuples of `(video, frame_idx)`.

                If `None` is specified (the default) and the labels contains embedded
                frames, those embedded frames will be re-saved to the new file.

                If `True` or `"all"`, all labeled frames and suggested frames will be
                embedded.

                If `"source"` is specified, no images will be embedded and the source
                video will be restored if available.

                This argument is only valid for the SLP backend.
        """
        from sleap_io import save_file

        save_file(self, filename, format=format, embed=embed, **kwargs)

    def clean(
        self,
        frames: bool = True,
        empty_instances: bool = False,
        skeletons: bool = True,
        tracks: bool = True,
        videos: bool = False,
    ):
        """Remove empty frames, unused skeletons, tracks and videos.

        Args:
            frames: If `True` (the default), remove empty frames.
            empty_instances: If `True` (NOT default), remove instances that have no
                visible points.
            skeletons: If `True` (the default), remove unused skeletons.
            tracks: If `True` (the default), remove unused tracks.
            videos: If `True` (NOT default), remove videos that have no labeled frames.
        """
        used_skeletons = []
        used_tracks = []
        used_videos = []
        kept_frames = []
        for lf in self.labeled_frames:

            if empty_instances:
                lf.remove_empty_instances()

            if frames and len(lf) == 0:
                continue

            if videos and lf.video not in used_videos:
                used_videos.append(lf.video)

            if skeletons or tracks:
                for inst in lf:
                    if skeletons and inst.skeleton not in used_skeletons:
                        used_skeletons.append(inst.skeleton)
                    if (
                        tracks
                        and inst.track is not None
                        and inst.track not in used_tracks
                    ):
                        used_tracks.append(inst.track)

            if frames:
                kept_frames.append(lf)

        if videos:
            self.videos = [video for video in self.videos if video in used_videos]

        if skeletons:
            self.skeletons = [
                skeleton for skeleton in self.skeletons if skeleton in used_skeletons
            ]

        if tracks:
            self.tracks = [track for track in self.tracks if track in used_tracks]

        if frames:
            self.labeled_frames = kept_frames

    def remove_predictions(self, clean: bool = True):
        """Remove all predicted instances from the labels.

        Args:
            clean: If `True` (the default), also remove any empty frames and unused
                tracks and skeletons. It does NOT remove videos that have no labeled
                frames or instances with no visible points.

        See also: `Labels.clean`
        """
        for lf in self.labeled_frames:
            lf.remove_predictions()

        if clean:
            self.clean(
                frames=True,
                empty_instances=False,
                skeletons=True,
                tracks=True,
                videos=False,
            )

    @property
    def user_labeled_frames(self) -> list[LabeledFrame]:
        """Return all labeled frames with user (non-predicted) instances."""
        return [lf for lf in self.labeled_frames if lf.has_user_instances]

    @property
    def instances(self) -> Iterator[Instance]:
        """Return an iterator over all instances within all labeled frames."""
        return (instance for lf in self.labeled_frames for instance in lf.instances)

    def rename_nodes(
        self,
        name_map: dict[NodeOrIndex, str] | list[str],
        skeleton: Skeleton | None = None,
    ):
        """Rename nodes in the skeleton.

        Args:
            name_map: A dictionary mapping old node names to new node names. Keys can be
                specified as `Node` objects, integer indices, or string names. Values
                must be specified as string names.

                If a list of strings is provided of the same length as the current
                nodes, the nodes will be renamed to the names in the list in order.
            skeleton: `Skeleton` to update. If `None` (the default), assumes there is
                only one skeleton in the labels and raises `ValueError` otherwise.

        Raises:
            ValueError: If the new node names exist in the skeleton, if the old node
                names are not found in the skeleton, or if there is more than one
                skeleton in the `Labels` but it is not specified.

        Notes:
            This method is recommended over `Skeleton.rename_nodes` as it will update
            all instances in the labels to reflect the new node names.

        Example:
            >>> labels = Labels(skeletons=[Skeleton(["A", "B", "C"])])
            >>> labels.rename_nodes({"A": "X", "B": "Y", "C": "Z"})
            >>> labels.skeleton.node_names
            ["X", "Y", "Z"]
            >>> labels.rename_nodes(["a", "b", "c"])
            >>> labels.skeleton.node_names
            ["a", "b", "c"]
        """
        if skeleton is None:
            if len(self.skeletons) != 1:
                raise ValueError(
                    "Skeleton must be specified when there is more than one skeleton in "
                    "the labels."
                )
            skeleton = self.skeleton

        skeleton.rename_nodes(name_map)

    def remove_nodes(self, nodes: list[NodeOrIndex], skeleton: Skeleton | None = None):
        """Remove nodes from the skeleton.

        Args:
            nodes: A list of node names, indices, or `Node` objects to remove.
            skeleton: `Skeleton` to update. If `None` (the default), assumes there is
                only one skeleton in the labels and raises `ValueError` otherwise.

        Raises:
            ValueError: If the nodes are not found in the skeleton, or if there is more
                than one skeleton in the `Labels` but it is not specified.

        Notes:
            This method should always be used when removing nodes from the skeleton as
            it handles updating the lookup caches necessary for indexing nodes by name,
            and updating instances to reflect the changes made to the skeleton.

            Any edges and symmetries that are connected to the removed nodes will also
            be removed.
        """
        if skeleton is None:
            if len(self.skeletons) != 1:
                raise ValueError(
                    "Skeleton must be specified when there is more than one skeleton "
                    "in the labels."
                )
            skeleton = self.skeleton

        skeleton.remove_nodes(nodes)

        for inst in self.instances:
            if inst.skeleton == skeleton:
                inst.update_skeleton()

    def reorder_nodes(
        self, new_order: list[NodeOrIndex], skeleton: Skeleton | None = None
    ):
        """Reorder nodes in the skeleton.

        Args:
            new_order: A list of node names, indices, or `Node` objects specifying the
                new order of the nodes.
            skeleton: `Skeleton` to update. If `None` (the default), assumes there is
                only one skeleton in the labels and raises `ValueError` otherwise.

        Raises:
            ValueError: If the new order of nodes is not the same length as the current
                nodes, or if there is more than one skeleton in the `Labels` but it is
                not specified.

        Notes:
            This method handles updating the lookup caches necessary for indexing nodes
            by name, as well as updating instances to reflect the changes made to the
            skeleton.
        """
        if skeleton is None:
            if len(self.skeletons) != 1:
                raise ValueError(
                    "Skeleton must be specified when there is more than one skeleton "
                    "in the labels."
                )
            skeleton = self.skeleton

        skeleton.reorder_nodes(new_order)

        for inst in self.instances:
            if inst.skeleton == skeleton:
                inst.update_skeleton()

    def replace_skeleton(
        self,
        new_skeleton: Skeleton,
        old_skeleton: Skeleton | None = None,
        node_map: dict[NodeOrIndex, NodeOrIndex] | None = None,
    ):
        """Replace the skeleton in the labels.

        Args:
            new_skeleton: The new `Skeleton` to replace the old skeleton with.
            old_skeleton: The old `Skeleton` to replace. If `None` (the default),
                assumes there is only one skeleton in the labels and raises `ValueError`
                otherwise.
            node_map: Dictionary mapping nodes in the old skeleton to nodes in the new
                skeleton. Keys and values can be specified as `Node` objects, integer
                indices, or string names. If not provided, only nodes with identical
                names will be mapped. Points associated with unmapped nodes will be
                removed.

        Raises:
            ValueError: If there is more than one skeleton in the `Labels` but it is not
                specified.

        Warning:
            This method will replace the skeleton in all instances in the labels that
            have the old skeleton. **All point data associated with nodes not in the
            `node_map` will be lost.**
        """
        if old_skeleton is None:
            if len(self.skeletons) != 1:
                raise ValueError(
                    "Old skeleton must be specified when there is more than one "
                    "skeleton in the labels."
                )
            old_skeleton = self.skeleton

        if node_map is None:
            node_map = {}
            for old_node in old_skeleton.nodes:
                for new_node in new_skeleton.nodes:
                    if old_node.name == new_node.name:
                        node_map[old_node] = new_node
                        break
        else:
            node_map = {
                old_skeleton.require_node(
                    old, add_missing=False
                ): new_skeleton.require_node(new, add_missing=False)
                for old, new in node_map.items()
            }

        # Make new -> old mapping for nodes for efficiency.
        rev_node_map = {new: old for old, new in node_map.items()}

        # Replace the skeleton in the instances.
        for inst in self.instances:
            if inst.skeleton == old_skeleton:
                inst.replace_skeleton(new_skeleton, rev_node_map=rev_node_map)

        # Replace the skeleton in the labels.
        self.skeletons[self.skeletons.index(old_skeleton)] = new_skeleton

    def replace_videos(
        self,
        old_videos: list[Video] | None = None,
        new_videos: list[Video] | None = None,
        video_map: dict[Video, Video] | None = None,
    ):
        """Replace videos and update all references.

        Args:
            old_videos: List of videos to be replaced.
            new_videos: List of videos to replace with.
            video_map: Alternative input of dictionary where keys are the old videos and
                values are the new videos.
        """
        if (
            old_videos is None
            and new_videos is not None
            and len(new_videos) == len(self.videos)
        ):
            old_videos = self.videos

        if video_map is None:
            video_map = {o: n for o, n in zip(old_videos, new_videos)}

        # Update the labeled frames with the new videos.
        for lf in self.labeled_frames:
            if lf.video in video_map:
                lf.video = video_map[lf.video]

        # Update suggestions with the new videos.
        for sf in self.suggestions:
            if sf.video in video_map:
                sf.video = video_map[sf.video]

        # Update the list of videos.
        self.videos = [video_map.get(video, video) for video in self.videos]

    def replace_filenames(
        self,
        new_filenames: list[str | Path] | None = None,
        filename_map: dict[str | Path, str | Path] | None = None,
        prefix_map: dict[str | Path, str | Path] | None = None,
    ):
        """Replace video filenames.

        Args:
            new_filenames: List of new filenames. Must have the same length as the
                number of videos in the labels.
            filename_map: Dictionary mapping old filenames (keys) to new filenames
                (values).
            prefix_map: Dictonary mapping old prefixes (keys) to new prefixes (values).

        Notes:
            Only one of the argument types can be provided.
        """
        n = 0
        if new_filenames is not None:
            n += 1
        if filename_map is not None:
            n += 1
        if prefix_map is not None:
            n += 1
        if n != 1:
            raise ValueError(
                "Exactly one input method must be provided to replace filenames."
            )

        if new_filenames is not None:
            if len(self.videos) != len(new_filenames):
                raise ValueError(
                    f"Number of new filenames ({len(new_filenames)}) does not match "
                    f"the number of videos ({len(self.videos)})."
                )

            for video, new_filename in zip(self.videos, new_filenames):
                video.replace_filename(new_filename)

        elif filename_map is not None:
            for video in self.videos:
                for old_fn, new_fn in filename_map.items():
                    if type(video.filename) == list:
                        new_fns = []
                        for fn in video.filename:
                            if Path(fn) == Path(old_fn):
                                new_fns.append(new_fn)
                            else:
                                new_fns.append(fn)
                        video.replace_filename(new_fns)
                    else:
                        if Path(video.filename) == Path(old_fn):
                            video.replace_filename(new_fn)

        elif prefix_map is not None:
            for video in self.videos:
                for old_prefix, new_prefix in prefix_map.items():
                    old_prefix, new_prefix = Path(old_prefix), Path(new_prefix)

                    if type(video.filename) == list:
                        new_fns = []
                        for fn in video.filename:
                            fn = Path(fn)
                            if fn.as_posix().startswith(old_prefix.as_posix()):
                                new_fns.append(new_prefix / fn.relative_to(old_prefix))
                            else:
                                new_fns.append(fn)
                        video.replace_filename(new_fns)
                    else:
                        fn = Path(video.filename)
                        if fn.as_posix().startswith(old_prefix.as_posix()):
                            video.replace_filename(
                                new_prefix / fn.relative_to(old_prefix)
                            )

    def extract(
        self, inds: list[int] | list[tuple[Video, int]] | np.ndarray, copy: bool = True
    ) -> Labels:
        """Extract a set of frames into a new Labels object.

        Args:
            inds: Indices of labeled frames. Can be specified as a list of array of
                integer indices of labeled frames or tuples of Video and frame indices.
            copy: If `True` (the default), return a copy of the frames and containing
                objects. Otherwise, return a reference to the data.

        Returns:
            A new `Labels` object containing the selected labels.

        Notes:
            This copies the labeled frames and their associated data, including
            skeletons and tracks, and tries to maintain the relative ordering.

            This also copies the provenance and inserts an extra key: `"source_labels"`
            with the path to the current labels, if available.

            It does NOT copy suggested frames.
        """
        lfs = self[inds]

        if copy:
            lfs = deepcopy(lfs)
        labels = Labels(lfs)

        # Try to keep the lists in the same order.
        track_to_ind = {track.name: ind for ind, track in enumerate(self.tracks)}
        labels.tracks = sorted(labels.tracks, key=lambda x: track_to_ind[x.name])

        skel_to_ind = {skel.name: ind for ind, skel in enumerate(self.skeletons)}
        labels.skeletons = sorted(labels.skeletons, key=lambda x: skel_to_ind[x.name])

        labels.provenance = deepcopy(labels.provenance)
        labels.provenance["source_labels"] = self.provenance.get("filename", None)

        return labels

    def split(self, n: int | float, seed: int | None = None) -> tuple[Labels, Labels]:
        """Separate the labels into random splits.

        Args:
            n: Size of the first split. If integer >= 1, assumes that this is the number
                of labeled frames in the first split. If < 1.0, this will be treated as
                a fraction of the total labeled frames.
            seed: Optional integer seed to use for reproducibility.

        Returns:
            A tuple of `split1, split2`.

            If an integer was specified, `len(split1) == n`.

            If a fraction was specified, `len(split1) == int(n * len(labels))`.

            The second split contains the remainder, i.e.,
            `len(split2) == len(labels) - len(split1)`.

            If there are too few frames, a minimum of 1 frame will be kept in the second
            split.

            If there is exactly 1 labeled frame in the labels, the same frame will be
            assigned to both splits.
        """
        n0 = len(self)
        if n0 == 0:
            return self, self
        n1 = n
        if n < 1.0:
            n1 = max(int(n0 * float(n)), 1)
        n2 = max(n0 - n1, 1)
        n1, n2 = int(n1), int(n2)

        rng = np.random.default_rng(seed=seed)
        inds1 = rng.choice(n0, size=(n1,), replace=False)

        if n0 == 1:
            inds2 = np.array([0])
        else:
            inds2 = np.setdiff1d(np.arange(n0), inds1)

        split1 = self.extract(inds1, copy=True)
        split2 = self.extract(inds2, copy=True)

        return split1, split2

    def make_training_splits(
        self,
        n_train: int | float,
        n_val: int | float | None = None,
        n_test: int | float | None = None,
        save_dir: str | Path | None = None,
        seed: int | None = None,
        embed: bool = True,
    ) -> tuple[Labels, Labels] | tuple[Labels, Labels, Labels]:
        """Make splits for training with embedded images.

        Args:
            n_train: Size of the training split as integer or fraction.
            n_val: Size of the validation split as integer or fraction. If `None`,
                this will be inferred based on the values of `n_train` and `n_test`. If
                `n_test` is `None`, this will be the remainder of the data after the
                training split.
            n_test: Size of the testing split as integer or fraction. If `None`, the
                test split will not be saved.
            save_dir: If specified, save splits to SLP files with embedded images.
            seed: Optional integer seed to use for reproducibility.
            embed: If `True` (the default), embed user labeled frame images in the saved
                files, which is useful for portability but can be slow for large
                projects. If `False`, labels are saved with references to the source
                videos files.

        Returns:
            A tuple of `labels_train, labels_val` or
            `labels_train, labels_val, labels_test` if `n_test` was specified.

        Notes:
            Predictions and suggestions will be removed before saving, leaving only
            frames with user labeled data (the source labels are not affected).

            Frames with user labeled data will be embedded in the resulting files.

            If `save_dir` is specified, this will save the randomly sampled splits to:

            - `{save_dir}/train.pkg.slp`
            - `{save_dir}/val.pkg.slp`
            - `{save_dir}/test.pkg.slp` (if `n_test` is specified)

            If `embed` is `False`, the files will be saved without embedded images to:

            - `{save_dir}/train.slp`
            - `{save_dir}/val.slp`
            - `{save_dir}/test.slp` (if `n_test` is specified)

        See also: `Labels.split`
        """
        # Clean up labels.
        labels = deepcopy(self)
        labels.remove_predictions()
        labels.suggestions = []
        labels.clean()

        # Make train split.
        labels_train, labels_rest = labels.split(n_train, seed=seed)

        # Make test split.
        if n_test is not None:
            if n_test < 1:
                n_test = (n_test * len(labels)) / len(labels_rest)
            labels_test, labels_rest = labels_rest.split(n=n_test, seed=seed)

        # Make val split.
        if n_val is not None:
            if n_val < 1:
                n_val = (n_val * len(labels)) / len(labels_rest)
            if isinstance(n_val, float) and n_val == 1.0:
                labels_val = labels_rest
            else:
                labels_val, _ = labels_rest.split(n=n_val, seed=seed)
        else:
            labels_val = labels_rest

        # Update provenance.
        source_labels = self.provenance.get("filename", None)
        labels_train.provenance["source_labels"] = source_labels
        if n_val is not None:
            labels_val.provenance["source_labels"] = source_labels
        if n_test is not None:
            labels_test.provenance["source_labels"] = source_labels

        # Save.
        if save_dir is not None:
            save_dir = Path(save_dir)
            save_dir.mkdir(exist_ok=True, parents=True)

            if embed:
                labels_train.save(save_dir / "train.pkg.slp", embed="user")
                labels_val.save(save_dir / "val.pkg.slp", embed="user")
                labels_test.save(save_dir / "test.pkg.slp", embed="user")
            else:
                labels_train.save(save_dir / "train.slp", embed=False)
                labels_val.save(save_dir / "val.slp", embed=False)
                labels_test.save(save_dir / "test.slp", embed=False)

        if n_test is None:
            return labels_train, labels_val
        else:
            return labels_train, labels_val, labels_test

    def trim(
        self,
        save_path: str | Path,
        frame_inds: list[int] | np.ndarray,
        video: Video | int | None = None,
        video_kwargs: dict[str, Any] | None = None,
    ) -> Labels:
        """Trim the labels to a subset of frames and videos accordingly.

        Args:
            save_path: Path to the trimmed labels SLP file. Video will be saved with the
                same base name but with .mp4 extension.
            frame_inds: Frame indices to save. Can be specified as a list or array of
                frame integers.
            video: Video or integer index of the video to trim. Does not need to be
                specified for single-video projects.
            video_kwargs: A dictionary of keyword arguments to provide to
                `sio.save_video` for video compression.

        Returns:
            The resulting labels object referencing the trimmed data.

        Notes:
            This will remove any data outside of the trimmed frames, save new videos,
            and adjust the frame indices to match the newly trimmed videos.
        """
        if video is None:
            if len(self.videos) == 1:
                video = self.video
            else:
                raise ValueError(
                    "Video needs to be specified when trimming multi-video projects."
                )
        if type(video) == int:
            video = self.videos[video]

        # Write trimmed clip.
        save_path = Path(save_path)
        video_path = save_path.with_suffix(".mp4")
        fidx0, fidx1 = np.min(frame_inds), np.max(frame_inds)
        new_video = video.save(
            video_path,
            frame_inds=np.arange(fidx0, fidx1 + 1),
            video_kwargs=video_kwargs,
        )

        # Get frames in range.
        # TODO: Create an optimized search function for this access pattern.
        inds = []
        for ind, lf in enumerate(self):
            if lf.video == video and lf.frame_idx >= fidx0 and lf.frame_idx <= fidx1:
                inds.append(ind)
        trimmed_labels = self.extract(inds, copy=True)

        # Adjust video and frame indices.
        trimmed_labels.videos = [new_video]
        for lf in trimmed_labels:
            lf.video = new_video
            lf.frame_idx = lf.frame_idx - fidx0

        # Save.
        trimmed_labels.save(save_path)

        return trimmed_labels

instances: Iterator[Instance] property

Return an iterator over all instances within all labeled frames.

skeleton: Skeleton property

Return the skeleton if there is only a single skeleton in the labels.

user_labeled_frames: list[LabeledFrame] property

Return all labeled frames with user (non-predicted) instances.

video: Video property

Return the video if there is only a single video in the labels.

__attrs_post_init__()

Append videos, skeletons, and tracks seen in labeled_frames to Labels.

Source code in sleap_io/model/labels.py
def __attrs_post_init__(self):
    """Append videos, skeletons, and tracks seen in `labeled_frames` to `Labels`."""
    self.update()

__getitem__(key)

Return one or more labeled frames based on indexing criteria.

Source code in sleap_io/model/labels.py
def __getitem__(
    self, key: int | slice | list[int] | np.ndarray | tuple[Video, int]
) -> list[LabeledFrame] | LabeledFrame:
    """Return one or more labeled frames based on indexing criteria."""
    if type(key) == int:
        return self.labeled_frames[key]
    elif type(key) == slice:
        return [self.labeled_frames[i] for i in range(*key.indices(len(self)))]
    elif type(key) == list:
        return [self.labeled_frames[i] for i in key]
    elif isinstance(key, np.ndarray):
        return [self.labeled_frames[i] for i in key.tolist()]
    elif type(key) == tuple and len(key) == 2:
        video, frame_idx = key
        res = self.find(video, frame_idx)
        if len(res) == 1:
            return res[0]
        elif len(res) == 0:
            raise IndexError(
                f"No labeled frames found for video {video} and "
                f"frame index {frame_idx}."
            )
    elif type(key) == Video:
        res = self.find(key)
        if len(res) == 0:
            raise IndexError(f"No labeled frames found for video {key}.")
        return res
    else:
        raise IndexError(f"Invalid indexing argument for labels: {key}")

__iter__()

Iterate over labeled_frames list when calling iter method on Labels.

Source code in sleap_io/model/labels.py
def __iter__(self):
    """Iterate over `labeled_frames` list when calling iter method on `Labels`."""
    return iter(self.labeled_frames)

__len__()

Return number of labeled frames.

Source code in sleap_io/model/labels.py
def __len__(self) -> int:
    """Return number of labeled frames."""
    return len(self.labeled_frames)

__repr__()

Return a readable representation of the labels.

Source code in sleap_io/model/labels.py
def __repr__(self) -> str:
    """Return a readable representation of the labels."""
    return (
        "Labels("
        f"labeled_frames={len(self.labeled_frames)}, "
        f"videos={len(self.videos)}, "
        f"skeletons={len(self.skeletons)}, "
        f"tracks={len(self.tracks)}, "
        f"suggestions={len(self.suggestions)}"
        ")"
    )

__str__()

Return a readable representation of the labels.

Source code in sleap_io/model/labels.py
def __str__(self) -> str:
    """Return a readable representation of the labels."""
    return self.__repr__()

append(lf, update=True)

Append a labeled frame to the labels.

Parameters:

Name Type Description Default
lf LabeledFrame

A labeled frame to add to the labels.

required
update bool

If True (the default), update list of videos, tracks and skeletons from the contents.

True
Source code in sleap_io/model/labels.py
def append(self, lf: LabeledFrame, update: bool = True):
    """Append a labeled frame to the labels.

    Args:
        lf: A labeled frame to add to the labels.
        update: If `True` (the default), update list of videos, tracks and
            skeletons from the contents.
    """
    self.labeled_frames.append(lf)

    if update:
        if lf.video not in self.videos:
            self.videos.append(lf.video)

        for inst in lf:
            if inst.skeleton not in self.skeletons:
                self.skeletons.append(inst.skeleton)

            if inst.track is not None and inst.track not in self.tracks:
                self.tracks.append(inst.track)

clean(frames=True, empty_instances=False, skeletons=True, tracks=True, videos=False)

Remove empty frames, unused skeletons, tracks and videos.

Parameters:

Name Type Description Default
frames bool

If True (the default), remove empty frames.

True
empty_instances bool

If True (NOT default), remove instances that have no visible points.

False
skeletons bool

If True (the default), remove unused skeletons.

True
tracks bool

If True (the default), remove unused tracks.

True
videos bool

If True (NOT default), remove videos that have no labeled frames.

False
Source code in sleap_io/model/labels.py
def clean(
    self,
    frames: bool = True,
    empty_instances: bool = False,
    skeletons: bool = True,
    tracks: bool = True,
    videos: bool = False,
):
    """Remove empty frames, unused skeletons, tracks and videos.

    Args:
        frames: If `True` (the default), remove empty frames.
        empty_instances: If `True` (NOT default), remove instances that have no
            visible points.
        skeletons: If `True` (the default), remove unused skeletons.
        tracks: If `True` (the default), remove unused tracks.
        videos: If `True` (NOT default), remove videos that have no labeled frames.
    """
    used_skeletons = []
    used_tracks = []
    used_videos = []
    kept_frames = []
    for lf in self.labeled_frames:

        if empty_instances:
            lf.remove_empty_instances()

        if frames and len(lf) == 0:
            continue

        if videos and lf.video not in used_videos:
            used_videos.append(lf.video)

        if skeletons or tracks:
            for inst in lf:
                if skeletons and inst.skeleton not in used_skeletons:
                    used_skeletons.append(inst.skeleton)
                if (
                    tracks
                    and inst.track is not None
                    and inst.track not in used_tracks
                ):
                    used_tracks.append(inst.track)

        if frames:
            kept_frames.append(lf)

    if videos:
        self.videos = [video for video in self.videos if video in used_videos]

    if skeletons:
        self.skeletons = [
            skeleton for skeleton in self.skeletons if skeleton in used_skeletons
        ]

    if tracks:
        self.tracks = [track for track in self.tracks if track in used_tracks]

    if frames:
        self.labeled_frames = kept_frames

extend(lfs, update=True)

Append a labeled frame to the labels.

Parameters:

Name Type Description Default
lfs list[LabeledFrame]

A list of labeled frames to add to the labels.

required
update bool

If True (the default), update list of videos, tracks and skeletons from the contents.

True
Source code in sleap_io/model/labels.py
def extend(self, lfs: list[LabeledFrame], update: bool = True):
    """Append a labeled frame to the labels.

    Args:
        lfs: A list of labeled frames to add to the labels.
        update: If `True` (the default), update list of videos, tracks and
            skeletons from the contents.
    """
    self.labeled_frames.extend(lfs)

    if update:
        for lf in lfs:
            if lf.video not in self.videos:
                self.videos.append(lf.video)

            for inst in lf:
                if inst.skeleton not in self.skeletons:
                    self.skeletons.append(inst.skeleton)

                if inst.track is not None and inst.track not in self.tracks:
                    self.tracks.append(inst.track)

extract(inds, copy=True)

Extract a set of frames into a new Labels object.

Parameters:

Name Type Description Default
inds list[int] | list[tuple[Video, int]] | ndarray

Indices of labeled frames. Can be specified as a list of array of integer indices of labeled frames or tuples of Video and frame indices.

required
copy bool

If True (the default), return a copy of the frames and containing objects. Otherwise, return a reference to the data.

True

Returns:

Type Description
Labels

A new Labels object containing the selected labels.

Notes

This copies the labeled frames and their associated data, including skeletons and tracks, and tries to maintain the relative ordering.

This also copies the provenance and inserts an extra key: "source_labels" with the path to the current labels, if available.

It does NOT copy suggested frames.

Source code in sleap_io/model/labels.py
def extract(
    self, inds: list[int] | list[tuple[Video, int]] | np.ndarray, copy: bool = True
) -> Labels:
    """Extract a set of frames into a new Labels object.

    Args:
        inds: Indices of labeled frames. Can be specified as a list of array of
            integer indices of labeled frames or tuples of Video and frame indices.
        copy: If `True` (the default), return a copy of the frames and containing
            objects. Otherwise, return a reference to the data.

    Returns:
        A new `Labels` object containing the selected labels.

    Notes:
        This copies the labeled frames and their associated data, including
        skeletons and tracks, and tries to maintain the relative ordering.

        This also copies the provenance and inserts an extra key: `"source_labels"`
        with the path to the current labels, if available.

        It does NOT copy suggested frames.
    """
    lfs = self[inds]

    if copy:
        lfs = deepcopy(lfs)
    labels = Labels(lfs)

    # Try to keep the lists in the same order.
    track_to_ind = {track.name: ind for ind, track in enumerate(self.tracks)}
    labels.tracks = sorted(labels.tracks, key=lambda x: track_to_ind[x.name])

    skel_to_ind = {skel.name: ind for ind, skel in enumerate(self.skeletons)}
    labels.skeletons = sorted(labels.skeletons, key=lambda x: skel_to_ind[x.name])

    labels.provenance = deepcopy(labels.provenance)
    labels.provenance["source_labels"] = self.provenance.get("filename", None)

    return labels

find(video, frame_idx=None, return_new=False)

Search for labeled frames given video and/or frame index.

Parameters:

Name Type Description Default
video Video

A Video that is associated with the project.

required
frame_idx int | list[int] | None

The frame index (or indices) which we want to find in the video. If a range is specified, we'll return all frames with indices in that range. If not specific, then we'll return all labeled frames for video.

None
return_new bool

Whether to return singleton of new and empty LabeledFrame if none are found in project.

False

Returns:

Type Description
list[LabeledFrame]

List of LabeledFrame objects that match the criteria.

The list will be empty if no matches found, unless return_new is True, in which case it contains new (empty) LabeledFrame objects with video and frame_index set.

Source code in sleap_io/model/labels.py
def find(
    self,
    video: Video,
    frame_idx: int | list[int] | None = None,
    return_new: bool = False,
) -> list[LabeledFrame]:
    """Search for labeled frames given video and/or frame index.

    Args:
        video: A `Video` that is associated with the project.
        frame_idx: The frame index (or indices) which we want to find in the video.
            If a range is specified, we'll return all frames with indices in that
            range. If not specific, then we'll return all labeled frames for video.
        return_new: Whether to return singleton of new and empty `LabeledFrame` if
            none are found in project.

    Returns:
        List of `LabeledFrame` objects that match the criteria.

        The list will be empty if no matches found, unless return_new is True, in
        which case it contains new (empty) `LabeledFrame` objects with `video` and
        `frame_index` set.
    """
    results = []

    if frame_idx is None:
        for lf in self.labeled_frames:
            if lf.video == video:
                results.append(lf)
        return results

    if np.isscalar(frame_idx):
        frame_idx = np.array(frame_idx).reshape(-1)

    for frame_ind in frame_idx:
        result = None
        for lf in self.labeled_frames:
            if lf.video == video and lf.frame_idx == frame_ind:
                result = lf
                results.append(result)
                break
        if result is None and return_new:
            results.append(LabeledFrame(video=video, frame_idx=frame_ind))

    return results

make_training_splits(n_train, n_val=None, n_test=None, save_dir=None, seed=None, embed=True)

Make splits for training with embedded images.

Parameters:

Name Type Description Default
n_train int | float

Size of the training split as integer or fraction.

required
n_val int | float | None

Size of the validation split as integer or fraction. If None, this will be inferred based on the values of n_train and n_test. If n_test is None, this will be the remainder of the data after the training split.

None
n_test int | float | None

Size of the testing split as integer or fraction. If None, the test split will not be saved.

None
save_dir str | Path | None

If specified, save splits to SLP files with embedded images.

None
seed int | None

Optional integer seed to use for reproducibility.

None
embed bool

If True (the default), embed user labeled frame images in the saved files, which is useful for portability but can be slow for large projects. If False, labels are saved with references to the source videos files.

True

Returns:

Type Description
tuple[Labels, Labels] | tuple[Labels, Labels, Labels]

A tuple of labels_train, labels_val or labels_train, labels_val, labels_test if n_test was specified.

Notes

Predictions and suggestions will be removed before saving, leaving only frames with user labeled data (the source labels are not affected).

Frames with user labeled data will be embedded in the resulting files.

If save_dir is specified, this will save the randomly sampled splits to:

  • {save_dir}/train.pkg.slp
  • {save_dir}/val.pkg.slp
  • {save_dir}/test.pkg.slp (if n_test is specified)

If embed is False, the files will be saved without embedded images to:

  • {save_dir}/train.slp
  • {save_dir}/val.slp
  • {save_dir}/test.slp (if n_test is specified)

See also: Labels.split

Source code in sleap_io/model/labels.py
def make_training_splits(
    self,
    n_train: int | float,
    n_val: int | float | None = None,
    n_test: int | float | None = None,
    save_dir: str | Path | None = None,
    seed: int | None = None,
    embed: bool = True,
) -> tuple[Labels, Labels] | tuple[Labels, Labels, Labels]:
    """Make splits for training with embedded images.

    Args:
        n_train: Size of the training split as integer or fraction.
        n_val: Size of the validation split as integer or fraction. If `None`,
            this will be inferred based on the values of `n_train` and `n_test`. If
            `n_test` is `None`, this will be the remainder of the data after the
            training split.
        n_test: Size of the testing split as integer or fraction. If `None`, the
            test split will not be saved.
        save_dir: If specified, save splits to SLP files with embedded images.
        seed: Optional integer seed to use for reproducibility.
        embed: If `True` (the default), embed user labeled frame images in the saved
            files, which is useful for portability but can be slow for large
            projects. If `False`, labels are saved with references to the source
            videos files.

    Returns:
        A tuple of `labels_train, labels_val` or
        `labels_train, labels_val, labels_test` if `n_test` was specified.

    Notes:
        Predictions and suggestions will be removed before saving, leaving only
        frames with user labeled data (the source labels are not affected).

        Frames with user labeled data will be embedded in the resulting files.

        If `save_dir` is specified, this will save the randomly sampled splits to:

        - `{save_dir}/train.pkg.slp`
        - `{save_dir}/val.pkg.slp`
        - `{save_dir}/test.pkg.slp` (if `n_test` is specified)

        If `embed` is `False`, the files will be saved without embedded images to:

        - `{save_dir}/train.slp`
        - `{save_dir}/val.slp`
        - `{save_dir}/test.slp` (if `n_test` is specified)

    See also: `Labels.split`
    """
    # Clean up labels.
    labels = deepcopy(self)
    labels.remove_predictions()
    labels.suggestions = []
    labels.clean()

    # Make train split.
    labels_train, labels_rest = labels.split(n_train, seed=seed)

    # Make test split.
    if n_test is not None:
        if n_test < 1:
            n_test = (n_test * len(labels)) / len(labels_rest)
        labels_test, labels_rest = labels_rest.split(n=n_test, seed=seed)

    # Make val split.
    if n_val is not None:
        if n_val < 1:
            n_val = (n_val * len(labels)) / len(labels_rest)
        if isinstance(n_val, float) and n_val == 1.0:
            labels_val = labels_rest
        else:
            labels_val, _ = labels_rest.split(n=n_val, seed=seed)
    else:
        labels_val = labels_rest

    # Update provenance.
    source_labels = self.provenance.get("filename", None)
    labels_train.provenance["source_labels"] = source_labels
    if n_val is not None:
        labels_val.provenance["source_labels"] = source_labels
    if n_test is not None:
        labels_test.provenance["source_labels"] = source_labels

    # Save.
    if save_dir is not None:
        save_dir = Path(save_dir)
        save_dir.mkdir(exist_ok=True, parents=True)

        if embed:
            labels_train.save(save_dir / "train.pkg.slp", embed="user")
            labels_val.save(save_dir / "val.pkg.slp", embed="user")
            labels_test.save(save_dir / "test.pkg.slp", embed="user")
        else:
            labels_train.save(save_dir / "train.slp", embed=False)
            labels_val.save(save_dir / "val.slp", embed=False)
            labels_test.save(save_dir / "test.slp", embed=False)

    if n_test is None:
        return labels_train, labels_val
    else:
        return labels_train, labels_val, labels_test

numpy(video=None, all_frames=True, untracked=False, return_confidence=False)

Construct a numpy array from instance points.

Parameters:

Name Type Description Default
video Optional[Union[Video, int]]

Video or video index to convert to numpy arrays. If None (the default), uses the first video.

None
untracked bool

If False (the default), include only instances that have a track assignment. If True, includes all instances in each frame in arbitrary order.

False
return_confidence bool

If False (the default), only return points of nodes. If True, return the points and scores of nodes.

False

Returns:

Type Description
ndarray

An array of tracks of shape (n_frames, n_tracks, n_nodes, 2) if return_confidence is False. Otherwise returned shape is (n_frames, n_tracks, n_nodes, 3) if return_confidence is True.

Missing data will be replaced with np.nan.

If this is a single instance project, a track does not need to be assigned.

Only predicted instances (NOT user instances) will be returned.

Notes

This method assumes that instances have tracks assigned and is intended to function primarily for single-video prediction results.

Source code in sleap_io/model/labels.py
def numpy(
    self,
    video: Optional[Union[Video, int]] = None,
    all_frames: bool = True,
    untracked: bool = False,
    return_confidence: bool = False,
) -> np.ndarray:
    """Construct a numpy array from instance points.

    Args:
        video: Video or video index to convert to numpy arrays. If `None` (the
            default), uses the first video.
        untracked: If `False` (the default), include only instances that have a
            track assignment. If `True`, includes all instances in each frame in
            arbitrary order.
        return_confidence: If `False` (the default), only return points of nodes. If
            `True`, return the points and scores of nodes.

    Returns:
        An array of tracks of shape `(n_frames, n_tracks, n_nodes, 2)` if
        `return_confidence` is `False`. Otherwise returned shape is
        `(n_frames, n_tracks, n_nodes, 3)` if `return_confidence` is `True`.

        Missing data will be replaced with `np.nan`.

        If this is a single instance project, a track does not need to be assigned.

        Only predicted instances (NOT user instances) will be returned.

    Notes:
        This method assumes that instances have tracks assigned and is intended to
        function primarily for single-video prediction results.
    """
    # Get labeled frames for specified video.
    if video is None:
        video = 0
    if type(video) == int:
        video = self.videos[video]
    lfs = [lf for lf in self.labeled_frames if lf.video == video]

    # Figure out frame index range.
    first_frame, last_frame = 0, 0
    for lf in lfs:
        first_frame = min(first_frame, lf.frame_idx)
        last_frame = max(last_frame, lf.frame_idx)

    # Figure out the number of tracks based on number of instances in each frame.
    # First, let's check the max number of predicted instances (regardless of
    # whether they're tracked.
    n_preds = 0
    for lf in lfs:
        n_pred_instances = len(lf.predicted_instances)
        n_preds = max(n_preds, n_pred_instances)

    # Case 1: We don't care about order because there's only 1 instance per frame,
    # or we're considering untracked instances.
    untracked = untracked or n_preds == 1
    if untracked:
        n_tracks = n_preds
    else:
        # Case 2: We're considering only tracked instances.
        n_tracks = len(self.tracks)

    n_frames = int(last_frame - first_frame + 1)
    skeleton = self.skeletons[-1]  # Assume project only uses last skeleton
    n_nodes = len(skeleton.nodes)

    if return_confidence:
        tracks = np.full((n_frames, n_tracks, n_nodes, 3), np.nan, dtype="float32")
    else:
        tracks = np.full((n_frames, n_tracks, n_nodes, 2), np.nan, dtype="float32")
    for lf in lfs:
        i = int(lf.frame_idx - first_frame)
        if untracked:
            for j, inst in enumerate(lf.predicted_instances):
                tracks[i, j] = inst.numpy(scores=return_confidence)
        else:
            tracked_instances = [
                inst
                for inst in lf.instances
                if type(inst) == PredictedInstance and inst.track is not None
            ]
            for inst in tracked_instances:
                j = self.tracks.index(inst.track)  # type: ignore[arg-type]
                tracks[i, j] = inst.numpy(scores=return_confidence)

    return tracks

remove_nodes(nodes, skeleton=None)

Remove nodes from the skeleton.

Parameters:

Name Type Description Default
nodes list[NodeOrIndex]

A list of node names, indices, or Node objects to remove.

required
skeleton Skeleton | None

Skeleton to update. If None (the default), assumes there is only one skeleton in the labels and raises ValueError otherwise.

None

Raises:

Type Description
ValueError

If the nodes are not found in the skeleton, or if there is more than one skeleton in the Labels but it is not specified.

Notes

This method should always be used when removing nodes from the skeleton as it handles updating the lookup caches necessary for indexing nodes by name, and updating instances to reflect the changes made to the skeleton.

Any edges and symmetries that are connected to the removed nodes will also be removed.

Source code in sleap_io/model/labels.py
def remove_nodes(self, nodes: list[NodeOrIndex], skeleton: Skeleton | None = None):
    """Remove nodes from the skeleton.

    Args:
        nodes: A list of node names, indices, or `Node` objects to remove.
        skeleton: `Skeleton` to update. If `None` (the default), assumes there is
            only one skeleton in the labels and raises `ValueError` otherwise.

    Raises:
        ValueError: If the nodes are not found in the skeleton, or if there is more
            than one skeleton in the `Labels` but it is not specified.

    Notes:
        This method should always be used when removing nodes from the skeleton as
        it handles updating the lookup caches necessary for indexing nodes by name,
        and updating instances to reflect the changes made to the skeleton.

        Any edges and symmetries that are connected to the removed nodes will also
        be removed.
    """
    if skeleton is None:
        if len(self.skeletons) != 1:
            raise ValueError(
                "Skeleton must be specified when there is more than one skeleton "
                "in the labels."
            )
        skeleton = self.skeleton

    skeleton.remove_nodes(nodes)

    for inst in self.instances:
        if inst.skeleton == skeleton:
            inst.update_skeleton()

remove_predictions(clean=True)

Remove all predicted instances from the labels.

Parameters:

Name Type Description Default
clean bool

If True (the default), also remove any empty frames and unused tracks and skeletons. It does NOT remove videos that have no labeled frames or instances with no visible points.

True

See also: Labels.clean

Source code in sleap_io/model/labels.py
def remove_predictions(self, clean: bool = True):
    """Remove all predicted instances from the labels.

    Args:
        clean: If `True` (the default), also remove any empty frames and unused
            tracks and skeletons. It does NOT remove videos that have no labeled
            frames or instances with no visible points.

    See also: `Labels.clean`
    """
    for lf in self.labeled_frames:
        lf.remove_predictions()

    if clean:
        self.clean(
            frames=True,
            empty_instances=False,
            skeletons=True,
            tracks=True,
            videos=False,
        )

rename_nodes(name_map, skeleton=None)

Rename nodes in the skeleton.

Parameters:

Name Type Description Default
name_map dict[NodeOrIndex, str] | list[str]

A dictionary mapping old node names to new node names. Keys can be specified as Node objects, integer indices, or string names. Values must be specified as string names.

If a list of strings is provided of the same length as the current nodes, the nodes will be renamed to the names in the list in order.

required
skeleton Skeleton | None

Skeleton to update. If None (the default), assumes there is only one skeleton in the labels and raises ValueError otherwise.

None

Raises:

Type Description
ValueError

If the new node names exist in the skeleton, if the old node names are not found in the skeleton, or if there is more than one skeleton in the Labels but it is not specified.

Notes

This method is recommended over Skeleton.rename_nodes as it will update all instances in the labels to reflect the new node names.

Example

labels = Labels(skeletons=[Skeleton(["A", "B", "C"])]) labels.rename_nodes({"A": "X", "B": "Y", "C": "Z"}) labels.skeleton.node_names ["X", "Y", "Z"] labels.rename_nodes(["a", "b", "c"]) labels.skeleton.node_names ["a", "b", "c"]

Source code in sleap_io/model/labels.py
def rename_nodes(
    self,
    name_map: dict[NodeOrIndex, str] | list[str],
    skeleton: Skeleton | None = None,
):
    """Rename nodes in the skeleton.

    Args:
        name_map: A dictionary mapping old node names to new node names. Keys can be
            specified as `Node` objects, integer indices, or string names. Values
            must be specified as string names.

            If a list of strings is provided of the same length as the current
            nodes, the nodes will be renamed to the names in the list in order.
        skeleton: `Skeleton` to update. If `None` (the default), assumes there is
            only one skeleton in the labels and raises `ValueError` otherwise.

    Raises:
        ValueError: If the new node names exist in the skeleton, if the old node
            names are not found in the skeleton, or if there is more than one
            skeleton in the `Labels` but it is not specified.

    Notes:
        This method is recommended over `Skeleton.rename_nodes` as it will update
        all instances in the labels to reflect the new node names.

    Example:
        >>> labels = Labels(skeletons=[Skeleton(["A", "B", "C"])])
        >>> labels.rename_nodes({"A": "X", "B": "Y", "C": "Z"})
        >>> labels.skeleton.node_names
        ["X", "Y", "Z"]
        >>> labels.rename_nodes(["a", "b", "c"])
        >>> labels.skeleton.node_names
        ["a", "b", "c"]
    """
    if skeleton is None:
        if len(self.skeletons) != 1:
            raise ValueError(
                "Skeleton must be specified when there is more than one skeleton in "
                "the labels."
            )
        skeleton = self.skeleton

    skeleton.rename_nodes(name_map)

reorder_nodes(new_order, skeleton=None)

Reorder nodes in the skeleton.

Parameters:

Name Type Description Default
new_order list[NodeOrIndex]

A list of node names, indices, or Node objects specifying the new order of the nodes.

required
skeleton Skeleton | None

Skeleton to update. If None (the default), assumes there is only one skeleton in the labels and raises ValueError otherwise.

None

Raises:

Type Description
ValueError

If the new order of nodes is not the same length as the current nodes, or if there is more than one skeleton in the Labels but it is not specified.

Notes

This method handles updating the lookup caches necessary for indexing nodes by name, as well as updating instances to reflect the changes made to the skeleton.

Source code in sleap_io/model/labels.py
def reorder_nodes(
    self, new_order: list[NodeOrIndex], skeleton: Skeleton | None = None
):
    """Reorder nodes in the skeleton.

    Args:
        new_order: A list of node names, indices, or `Node` objects specifying the
            new order of the nodes.
        skeleton: `Skeleton` to update. If `None` (the default), assumes there is
            only one skeleton in the labels and raises `ValueError` otherwise.

    Raises:
        ValueError: If the new order of nodes is not the same length as the current
            nodes, or if there is more than one skeleton in the `Labels` but it is
            not specified.

    Notes:
        This method handles updating the lookup caches necessary for indexing nodes
        by name, as well as updating instances to reflect the changes made to the
        skeleton.
    """
    if skeleton is None:
        if len(self.skeletons) != 1:
            raise ValueError(
                "Skeleton must be specified when there is more than one skeleton "
                "in the labels."
            )
        skeleton = self.skeleton

    skeleton.reorder_nodes(new_order)

    for inst in self.instances:
        if inst.skeleton == skeleton:
            inst.update_skeleton()

replace_filenames(new_filenames=None, filename_map=None, prefix_map=None)

Replace video filenames.

Parameters:

Name Type Description Default
new_filenames list[str | Path] | None

List of new filenames. Must have the same length as the number of videos in the labels.

None
filename_map dict[str | Path, str | Path] | None

Dictionary mapping old filenames (keys) to new filenames (values).

None
prefix_map dict[str | Path, str | Path] | None

Dictonary mapping old prefixes (keys) to new prefixes (values).

None
Notes

Only one of the argument types can be provided.

Source code in sleap_io/model/labels.py
def replace_filenames(
    self,
    new_filenames: list[str | Path] | None = None,
    filename_map: dict[str | Path, str | Path] | None = None,
    prefix_map: dict[str | Path, str | Path] | None = None,
):
    """Replace video filenames.

    Args:
        new_filenames: List of new filenames. Must have the same length as the
            number of videos in the labels.
        filename_map: Dictionary mapping old filenames (keys) to new filenames
            (values).
        prefix_map: Dictonary mapping old prefixes (keys) to new prefixes (values).

    Notes:
        Only one of the argument types can be provided.
    """
    n = 0
    if new_filenames is not None:
        n += 1
    if filename_map is not None:
        n += 1
    if prefix_map is not None:
        n += 1
    if n != 1:
        raise ValueError(
            "Exactly one input method must be provided to replace filenames."
        )

    if new_filenames is not None:
        if len(self.videos) != len(new_filenames):
            raise ValueError(
                f"Number of new filenames ({len(new_filenames)}) does not match "
                f"the number of videos ({len(self.videos)})."
            )

        for video, new_filename in zip(self.videos, new_filenames):
            video.replace_filename(new_filename)

    elif filename_map is not None:
        for video in self.videos:
            for old_fn, new_fn in filename_map.items():
                if type(video.filename) == list:
                    new_fns = []
                    for fn in video.filename:
                        if Path(fn) == Path(old_fn):
                            new_fns.append(new_fn)
                        else:
                            new_fns.append(fn)
                    video.replace_filename(new_fns)
                else:
                    if Path(video.filename) == Path(old_fn):
                        video.replace_filename(new_fn)

    elif prefix_map is not None:
        for video in self.videos:
            for old_prefix, new_prefix in prefix_map.items():
                old_prefix, new_prefix = Path(old_prefix), Path(new_prefix)

                if type(video.filename) == list:
                    new_fns = []
                    for fn in video.filename:
                        fn = Path(fn)
                        if fn.as_posix().startswith(old_prefix.as_posix()):
                            new_fns.append(new_prefix / fn.relative_to(old_prefix))
                        else:
                            new_fns.append(fn)
                    video.replace_filename(new_fns)
                else:
                    fn = Path(video.filename)
                    if fn.as_posix().startswith(old_prefix.as_posix()):
                        video.replace_filename(
                            new_prefix / fn.relative_to(old_prefix)
                        )

replace_skeleton(new_skeleton, old_skeleton=None, node_map=None)

Replace the skeleton in the labels.

Parameters:

Name Type Description Default
new_skeleton Skeleton

The new Skeleton to replace the old skeleton with.

required
old_skeleton Skeleton | None

The old Skeleton to replace. If None (the default), assumes there is only one skeleton in the labels and raises ValueError otherwise.

None
node_map dict[NodeOrIndex, NodeOrIndex] | None

Dictionary mapping nodes in the old skeleton to nodes in the new skeleton. Keys and values can be specified as Node objects, integer indices, or string names. If not provided, only nodes with identical names will be mapped. Points associated with unmapped nodes will be removed.

None

Raises:

Type Description
ValueError

If there is more than one skeleton in the Labels but it is not specified.

Warning

This method will replace the skeleton in all instances in the labels that have the old skeleton. All point data associated with nodes not in the node_map will be lost.

Source code in sleap_io/model/labels.py
def replace_skeleton(
    self,
    new_skeleton: Skeleton,
    old_skeleton: Skeleton | None = None,
    node_map: dict[NodeOrIndex, NodeOrIndex] | None = None,
):
    """Replace the skeleton in the labels.

    Args:
        new_skeleton: The new `Skeleton` to replace the old skeleton with.
        old_skeleton: The old `Skeleton` to replace. If `None` (the default),
            assumes there is only one skeleton in the labels and raises `ValueError`
            otherwise.
        node_map: Dictionary mapping nodes in the old skeleton to nodes in the new
            skeleton. Keys and values can be specified as `Node` objects, integer
            indices, or string names. If not provided, only nodes with identical
            names will be mapped. Points associated with unmapped nodes will be
            removed.

    Raises:
        ValueError: If there is more than one skeleton in the `Labels` but it is not
            specified.

    Warning:
        This method will replace the skeleton in all instances in the labels that
        have the old skeleton. **All point data associated with nodes not in the
        `node_map` will be lost.**
    """
    if old_skeleton is None:
        if len(self.skeletons) != 1:
            raise ValueError(
                "Old skeleton must be specified when there is more than one "
                "skeleton in the labels."
            )
        old_skeleton = self.skeleton

    if node_map is None:
        node_map = {}
        for old_node in old_skeleton.nodes:
            for new_node in new_skeleton.nodes:
                if old_node.name == new_node.name:
                    node_map[old_node] = new_node
                    break
    else:
        node_map = {
            old_skeleton.require_node(
                old, add_missing=False
            ): new_skeleton.require_node(new, add_missing=False)
            for old, new in node_map.items()
        }

    # Make new -> old mapping for nodes for efficiency.
    rev_node_map = {new: old for old, new in node_map.items()}

    # Replace the skeleton in the instances.
    for inst in self.instances:
        if inst.skeleton == old_skeleton:
            inst.replace_skeleton(new_skeleton, rev_node_map=rev_node_map)

    # Replace the skeleton in the labels.
    self.skeletons[self.skeletons.index(old_skeleton)] = new_skeleton

replace_videos(old_videos=None, new_videos=None, video_map=None)

Replace videos and update all references.

Parameters:

Name Type Description Default
old_videos list[Video] | None

List of videos to be replaced.

None
new_videos list[Video] | None

List of videos to replace with.

None
video_map dict[Video, Video] | None

Alternative input of dictionary where keys are the old videos and values are the new videos.

None
Source code in sleap_io/model/labels.py
def replace_videos(
    self,
    old_videos: list[Video] | None = None,
    new_videos: list[Video] | None = None,
    video_map: dict[Video, Video] | None = None,
):
    """Replace videos and update all references.

    Args:
        old_videos: List of videos to be replaced.
        new_videos: List of videos to replace with.
        video_map: Alternative input of dictionary where keys are the old videos and
            values are the new videos.
    """
    if (
        old_videos is None
        and new_videos is not None
        and len(new_videos) == len(self.videos)
    ):
        old_videos = self.videos

    if video_map is None:
        video_map = {o: n for o, n in zip(old_videos, new_videos)}

    # Update the labeled frames with the new videos.
    for lf in self.labeled_frames:
        if lf.video in video_map:
            lf.video = video_map[lf.video]

    # Update suggestions with the new videos.
    for sf in self.suggestions:
        if sf.video in video_map:
            sf.video = video_map[sf.video]

    # Update the list of videos.
    self.videos = [video_map.get(video, video) for video in self.videos]

save(filename, format=None, embed=None, **kwargs)

Save labels to file in specified format.

Parameters:

Name Type Description Default
filename str

Path to save labels to.

required
format Optional[str]

The format to save the labels in. If None, the format will be inferred from the file extension. Available formats are "slp", "nwb", "labelstudio", and "jabs".

None
embed bool | str | list[tuple[Video, int]] | None

Frames to embed in the saved labels file. One of None, True, "all", "user", "suggestions", "user+suggestions", "source" or list of tuples of (video, frame_idx).

If None is specified (the default) and the labels contains embedded frames, those embedded frames will be re-saved to the new file.

If True or "all", all labeled frames and suggested frames will be embedded.

If "source" is specified, no images will be embedded and the source video will be restored if available.

This argument is only valid for the SLP backend.

None
Source code in sleap_io/model/labels.py
def save(
    self,
    filename: str,
    format: Optional[str] = None,
    embed: bool | str | list[tuple[Video, int]] | None = None,
    **kwargs,
):
    """Save labels to file in specified format.

    Args:
        filename: Path to save labels to.
        format: The format to save the labels in. If `None`, the format will be
            inferred from the file extension. Available formats are `"slp"`,
            `"nwb"`, `"labelstudio"`, and `"jabs"`.
        embed: Frames to embed in the saved labels file. One of `None`, `True`,
            `"all"`, `"user"`, `"suggestions"`, `"user+suggestions"`, `"source"` or
            list of tuples of `(video, frame_idx)`.

            If `None` is specified (the default) and the labels contains embedded
            frames, those embedded frames will be re-saved to the new file.

            If `True` or `"all"`, all labeled frames and suggested frames will be
            embedded.

            If `"source"` is specified, no images will be embedded and the source
            video will be restored if available.

            This argument is only valid for the SLP backend.
    """
    from sleap_io import save_file

    save_file(self, filename, format=format, embed=embed, **kwargs)

split(n, seed=None)

Separate the labels into random splits.

Parameters:

Name Type Description Default
n int | float

Size of the first split. If integer >= 1, assumes that this is the number of labeled frames in the first split. If < 1.0, this will be treated as a fraction of the total labeled frames.

required
seed int | None

Optional integer seed to use for reproducibility.

None

Returns:

Type Description
tuple[Labels, Labels]

A tuple of split1, split2.

If an integer was specified, len(split1) == n.

If a fraction was specified, len(split1) == int(n * len(labels)).

The second split contains the remainder, i.e., len(split2) == len(labels) - len(split1).

If there are too few frames, a minimum of 1 frame will be kept in the second split.

If there is exactly 1 labeled frame in the labels, the same frame will be assigned to both splits.

Source code in sleap_io/model/labels.py
def split(self, n: int | float, seed: int | None = None) -> tuple[Labels, Labels]:
    """Separate the labels into random splits.

    Args:
        n: Size of the first split. If integer >= 1, assumes that this is the number
            of labeled frames in the first split. If < 1.0, this will be treated as
            a fraction of the total labeled frames.
        seed: Optional integer seed to use for reproducibility.

    Returns:
        A tuple of `split1, split2`.

        If an integer was specified, `len(split1) == n`.

        If a fraction was specified, `len(split1) == int(n * len(labels))`.

        The second split contains the remainder, i.e.,
        `len(split2) == len(labels) - len(split1)`.

        If there are too few frames, a minimum of 1 frame will be kept in the second
        split.

        If there is exactly 1 labeled frame in the labels, the same frame will be
        assigned to both splits.
    """
    n0 = len(self)
    if n0 == 0:
        return self, self
    n1 = n
    if n < 1.0:
        n1 = max(int(n0 * float(n)), 1)
    n2 = max(n0 - n1, 1)
    n1, n2 = int(n1), int(n2)

    rng = np.random.default_rng(seed=seed)
    inds1 = rng.choice(n0, size=(n1,), replace=False)

    if n0 == 1:
        inds2 = np.array([0])
    else:
        inds2 = np.setdiff1d(np.arange(n0), inds1)

    split1 = self.extract(inds1, copy=True)
    split2 = self.extract(inds2, copy=True)

    return split1, split2

trim(save_path, frame_inds, video=None, video_kwargs=None)

Trim the labels to a subset of frames and videos accordingly.

Parameters:

Name Type Description Default
save_path str | Path

Path to the trimmed labels SLP file. Video will be saved with the same base name but with .mp4 extension.

required
frame_inds list[int] | ndarray

Frame indices to save. Can be specified as a list or array of frame integers.

required
video Video | int | None

Video or integer index of the video to trim. Does not need to be specified for single-video projects.

None
video_kwargs dict[str, Any] | None

A dictionary of keyword arguments to provide to sio.save_video for video compression.

None

Returns:

Type Description
Labels

The resulting labels object referencing the trimmed data.

Notes

This will remove any data outside of the trimmed frames, save new videos, and adjust the frame indices to match the newly trimmed videos.

Source code in sleap_io/model/labels.py
def trim(
    self,
    save_path: str | Path,
    frame_inds: list[int] | np.ndarray,
    video: Video | int | None = None,
    video_kwargs: dict[str, Any] | None = None,
) -> Labels:
    """Trim the labels to a subset of frames and videos accordingly.

    Args:
        save_path: Path to the trimmed labels SLP file. Video will be saved with the
            same base name but with .mp4 extension.
        frame_inds: Frame indices to save. Can be specified as a list or array of
            frame integers.
        video: Video or integer index of the video to trim. Does not need to be
            specified for single-video projects.
        video_kwargs: A dictionary of keyword arguments to provide to
            `sio.save_video` for video compression.

    Returns:
        The resulting labels object referencing the trimmed data.

    Notes:
        This will remove any data outside of the trimmed frames, save new videos,
        and adjust the frame indices to match the newly trimmed videos.
    """
    if video is None:
        if len(self.videos) == 1:
            video = self.video
        else:
            raise ValueError(
                "Video needs to be specified when trimming multi-video projects."
            )
    if type(video) == int:
        video = self.videos[video]

    # Write trimmed clip.
    save_path = Path(save_path)
    video_path = save_path.with_suffix(".mp4")
    fidx0, fidx1 = np.min(frame_inds), np.max(frame_inds)
    new_video = video.save(
        video_path,
        frame_inds=np.arange(fidx0, fidx1 + 1),
        video_kwargs=video_kwargs,
    )

    # Get frames in range.
    # TODO: Create an optimized search function for this access pattern.
    inds = []
    for ind, lf in enumerate(self):
        if lf.video == video and lf.frame_idx >= fidx0 and lf.frame_idx <= fidx1:
            inds.append(ind)
    trimmed_labels = self.extract(inds, copy=True)

    # Adjust video and frame indices.
    trimmed_labels.videos = [new_video]
    for lf in trimmed_labels:
        lf.video = new_video
        lf.frame_idx = lf.frame_idx - fidx0

    # Save.
    trimmed_labels.save(save_path)

    return trimmed_labels

update()

Update data structures based on contents.

This function will update the list of skeletons, videos and tracks from the labeled frames, instances and suggestions.

Source code in sleap_io/model/labels.py
def update(self):
    """Update data structures based on contents.

    This function will update the list of skeletons, videos and tracks from the
    labeled frames, instances and suggestions.
    """
    for lf in self.labeled_frames:
        if lf.video not in self.videos:
            self.videos.append(lf.video)

        for inst in lf:
            if inst.skeleton not in self.skeletons:
                self.skeletons.append(inst.skeleton)

            if inst.track is not None and inst.track not in self.tracks:
                self.tracks.append(inst.track)

    for sf in self.suggestions:
        if sf.video not in self.videos:
            self.videos.append(sf.video)

sleap_io.LabeledFrame

Labeled data for a single frame of a video.

Attributes:

Name Type Description
video Video

The Video associated with this LabeledFrame.

frame_idx int

The index of the LabeledFrame in the Video.

instances list[Union[Instance, PredictedInstance]]

List of Instance objects associated with this LabeledFrame.

Notes

Instances of this class are hashed by identity, not by value. This means that two LabeledFrame instances with the same attributes will NOT be considered equal in a set or dict.

Methods:

Name Description
__getitem__

Return the Instance at key index in the instances list.

__iter__

Iterate over Instances in instances list.

__len__

Return the number of instances in the frame.

numpy

Return all instances in the frame as a numpy array.

remove_empty_instances

Remove all instances with no visible points.

remove_predictions

Remove all PredictedInstance objects from the frame.

Attributes:

Name Type Description
has_predicted_instances bool

Return True if the frame has any predicted instances.

has_user_instances bool

Return True if the frame has any user-labeled instances.

image ndarray

Return the image of the frame as a numpy array.

predicted_instances list[Instance]

Frame instances that are predicted by a model (PredictedInstance objects).

unused_predictions list[Instance]

Return a list of "unused" PredictedInstance objects in frame.

user_instances list[Instance]

Frame instances that are user-labeled (Instance objects).

Source code in sleap_io/model/labeled_frame.py
@define(eq=False)
class LabeledFrame:
    """Labeled data for a single frame of a video.

    Attributes:
        video: The `Video` associated with this `LabeledFrame`.
        frame_idx: The index of the `LabeledFrame` in the `Video`.
        instances: List of `Instance` objects associated with this `LabeledFrame`.

    Notes:
        Instances of this class are hashed by identity, not by value. This means that
        two `LabeledFrame` instances with the same attributes will NOT be considered
        equal in a set or dict.
    """

    video: Video
    frame_idx: int = field(converter=int)
    instances: list[Union[Instance, PredictedInstance]] = field(factory=list)

    def __len__(self) -> int:
        """Return the number of instances in the frame."""
        return len(self.instances)

    def __getitem__(self, key: int) -> Union[Instance, PredictedInstance]:
        """Return the `Instance` at `key` index in the `instances` list."""
        return self.instances[key]

    def __iter__(self):
        """Iterate over `Instance`s in `instances` list."""
        return iter(self.instances)

    @property
    def user_instances(self) -> list[Instance]:
        """Frame instances that are user-labeled (`Instance` objects)."""
        return [inst for inst in self.instances if type(inst) == Instance]

    @property
    def has_user_instances(self) -> bool:
        """Return True if the frame has any user-labeled instances."""
        for inst in self.instances:
            if type(inst) == Instance:
                return True
        return False

    @property
    def predicted_instances(self) -> list[Instance]:
        """Frame instances that are predicted by a model (`PredictedInstance` objects)."""
        return [inst for inst in self.instances if type(inst) == PredictedInstance]

    @property
    def has_predicted_instances(self) -> bool:
        """Return True if the frame has any predicted instances."""
        for inst in self.instances:
            if type(inst) == PredictedInstance:
                return True
        return False

    def numpy(self) -> np.ndarray:
        """Return all instances in the frame as a numpy array.

        Returns:
            Points as a numpy array of shape `(n_instances, n_nodes, 2)`.

            Note that the order of the instances is arbitrary.
        """
        n_instances = len(self.instances)
        n_nodes = len(self.instances[0]) if n_instances > 0 else 0
        pts = np.full((n_instances, n_nodes, 2), np.nan)
        for i, inst in enumerate(self.instances):
            pts[i] = inst.numpy()[:, 0:2]
        return pts

    @property
    def image(self) -> np.ndarray:
        """Return the image of the frame as a numpy array."""
        return self.video[self.frame_idx]

    @property
    def unused_predictions(self) -> list[Instance]:
        """Return a list of "unused" `PredictedInstance` objects in frame.

        This is all of the `PredictedInstance` objects which do not have a corresponding
        `Instance` in the same track in the same frame.
        """
        unused_predictions = []
        any_tracks = [inst.track for inst in self.instances if inst.track is not None]
        if len(any_tracks):
            # Use tracks to determine which predicted instances have been used
            used_tracks = [
                inst.track
                for inst in self.instances
                if type(inst) == Instance and inst.track is not None
            ]
            unused_predictions = [
                inst
                for inst in self.instances
                if inst.track not in used_tracks and type(inst) == PredictedInstance
            ]

        else:
            # Use from_predicted to determine which predicted instances have been used
            # TODO: should we always do this instead of using tracks?
            used_instances = [
                inst.from_predicted
                for inst in self.instances
                if inst.from_predicted is not None
            ]
            unused_predictions = [
                inst
                for inst in self.instances
                if type(inst) == PredictedInstance and inst not in used_instances
            ]

        return unused_predictions

    def remove_predictions(self):
        """Remove all `PredictedInstance` objects from the frame."""
        self.instances = [inst for inst in self.instances if type(inst) == Instance]

    def remove_empty_instances(self):
        """Remove all instances with no visible points."""
        self.instances = [inst for inst in self.instances if not inst.is_empty]

has_predicted_instances: bool property

Return True if the frame has any predicted instances.

has_user_instances: bool property

Return True if the frame has any user-labeled instances.

image: np.ndarray property

Return the image of the frame as a numpy array.

predicted_instances: list[Instance] property

Frame instances that are predicted by a model (PredictedInstance objects).

unused_predictions: list[Instance] property

Return a list of "unused" PredictedInstance objects in frame.

This is all of the PredictedInstance objects which do not have a corresponding Instance in the same track in the same frame.

user_instances: list[Instance] property

Frame instances that are user-labeled (Instance objects).

__getitem__(key)

Return the Instance at key index in the instances list.

Source code in sleap_io/model/labeled_frame.py
def __getitem__(self, key: int) -> Union[Instance, PredictedInstance]:
    """Return the `Instance` at `key` index in the `instances` list."""
    return self.instances[key]

__iter__()

Iterate over Instances in instances list.

Source code in sleap_io/model/labeled_frame.py
def __iter__(self):
    """Iterate over `Instance`s in `instances` list."""
    return iter(self.instances)

__len__()

Return the number of instances in the frame.

Source code in sleap_io/model/labeled_frame.py
def __len__(self) -> int:
    """Return the number of instances in the frame."""
    return len(self.instances)

numpy()

Return all instances in the frame as a numpy array.

Returns:

Type Description
ndarray

Points as a numpy array of shape (n_instances, n_nodes, 2).

Note that the order of the instances is arbitrary.

Source code in sleap_io/model/labeled_frame.py
def numpy(self) -> np.ndarray:
    """Return all instances in the frame as a numpy array.

    Returns:
        Points as a numpy array of shape `(n_instances, n_nodes, 2)`.

        Note that the order of the instances is arbitrary.
    """
    n_instances = len(self.instances)
    n_nodes = len(self.instances[0]) if n_instances > 0 else 0
    pts = np.full((n_instances, n_nodes, 2), np.nan)
    for i, inst in enumerate(self.instances):
        pts[i] = inst.numpy()[:, 0:2]
    return pts

remove_empty_instances()

Remove all instances with no visible points.

Source code in sleap_io/model/labeled_frame.py
def remove_empty_instances(self):
    """Remove all instances with no visible points."""
    self.instances = [inst for inst in self.instances if not inst.is_empty]

remove_predictions()

Remove all PredictedInstance objects from the frame.

Source code in sleap_io/model/labeled_frame.py
def remove_predictions(self):
    """Remove all `PredictedInstance` objects from the frame."""
    self.instances = [inst for inst in self.instances if type(inst) == Instance]

sleap_io.Instance

This class represents a ground truth instance such as an animal.

An Instance has a set of landmarks (Points) that correspond to the nodes defined in its Skeleton.

It may also be associated with a Track which links multiple instances together across frames or videos.

Attributes:

Name Type Description
points Union[dict[Node, Point], dict[Node, PredictedPoint]]

A dictionary with keys as Nodes and values as Points containing all of the landmarks of the instance. This can also be specified as a dictionary with node names, a list of length n_nodes, or a numpy array of shape (n_nodes, 2).

skeleton Skeleton

The Skeleton that describes the Nodes and Edges associated with this instance.

track Optional[Track]

An optional Track associated with a unique animal/object across frames or videos.

from_predicted Optional[PredictedInstance]

The PredictedInstance (if any) that this instance was initialized from. This is used with human-in-the-loop workflows.

Methods:

Name Description
__attrs_post_init__

Maintain point mappings between node and points after initialization.

__getitem__

Return the point associated with a node or None if not set.

__len__

Return the number of points in the instance.

__repr__

Return a readable representation of the instance.

from_numpy

Create an instance object from a numpy array.

numpy

Return the instance points as a numpy array.

replace_skeleton

Replace the skeleton associated with the instance.

update_skeleton

Update the points dictionary to match the skeleton.

Attributes:

Name Type Description
is_empty bool

Return True if no points are visible on the instance.

n_visible int

Return the number of visible points in the instance.

Source code in sleap_io/model/instance.py
@define(auto_attribs=True, slots=True, eq=True)
class Instance:
    """This class represents a ground truth instance such as an animal.

    An `Instance` has a set of landmarks (`Point`s) that correspond to the nodes defined
    in its `Skeleton`.

    It may also be associated with a `Track` which links multiple instances together
    across frames or videos.

    Attributes:
        points: A dictionary with keys as `Node`s and values as `Point`s containing all
            of the landmarks of the instance. This can also be specified as a dictionary
            with node names, a list of length `n_nodes`, or a numpy array of shape
            `(n_nodes, 2)`.
        skeleton: The `Skeleton` that describes the `Node`s and `Edge`s associated with
            this instance.
        track: An optional `Track` associated with a unique animal/object across frames
            or videos.
        from_predicted: The `PredictedInstance` (if any) that this instance was
            initialized from. This is used with human-in-the-loop workflows.
    """

    _POINT_TYPE = Point

    def _make_default_point(self, x, y):
        return self._POINT_TYPE(x, y, visible=not (math.isnan(x) or math.isnan(y)))

    def _convert_points(self, attr, points):
        """Maintain points mappings between nodes and points."""
        if type(points) == np.ndarray:
            points = points.tolist()

        if type(points) == list:
            if len(points) != len(self.skeleton):
                raise ValueError(
                    "If specifying points as a list, must provide as many points as "
                    "nodes in the skeleton."
                )
            points = {node: pt for node, pt in zip(self.skeleton.nodes, points)}

        if type(points) == dict:
            keys = [
                node if type(node) == Node else self.skeleton[node]
                for node in points.keys()
            ]
            vals = [
                (
                    point
                    if type(point) == self._POINT_TYPE
                    else self._make_default_point(*point)
                )
                for point in points.values()
            ]
            points = {k: v for k, v in zip(keys, vals)}

        missing_nodes = list(set(self.skeleton.nodes) - set(points.keys()))
        for node in missing_nodes:
            points[node] = self._make_default_point(x=np.nan, y=np.nan)

        return points

    points: Union[dict[Node, Point], dict[Node, PredictedPoint]] = field(
        on_setattr=_convert_points, eq=cmp_using(eq=_compare_points)  # type: ignore
    )
    skeleton: Skeleton
    track: Optional[Track] = None
    from_predicted: Optional[PredictedInstance] = None

    def __attrs_post_init__(self):
        """Maintain point mappings between node and points after initialization."""
        super().__setattr__("points", self._convert_points(None, self.points))

    def __getitem__(self, node: Union[int, str, Node]) -> Optional[Point]:
        """Return the point associated with a node or `None` if not set."""
        if (type(node) == int) or (type(node) == str):
            node = self.skeleton[node]
        if isinstance(node, Node):
            return self.points.get(node, None)
        else:
            raise IndexError(f"Invalid indexing argument for instance: {node}")

    def __len__(self) -> int:
        """Return the number of points in the instance."""
        return len(self.points)

    def __repr__(self) -> str:
        """Return a readable representation of the instance."""
        pts = self.numpy().tolist()
        track = f'"{self.track.name}"' if self.track is not None else self.track

        return f"Instance(points={pts}, track={track})"

    @property
    def n_visible(self) -> int:
        """Return the number of visible points in the instance."""
        return sum(pt.visible for pt in self.points.values())

    @property
    def is_empty(self) -> bool:
        """Return `True` if no points are visible on the instance."""
        return self.n_visible == 0

    @classmethod
    def from_numpy(
        cls, points: np.ndarray, skeleton: Skeleton, track: Optional[Track] = None
    ) -> "Instance":
        """Create an instance object from a numpy array.

        Args:
            points: A numpy array of shape `(n_nodes, 2)` corresponding to the points of
                the skeleton. Values of `np.nan` indicate "missing" nodes.
            skeleton: The `Skeleton` that this `Instance` is associated with. It should
                have `n_nodes` nodes.
            track: An optional `Track` associated with a unique animal/object across
                frames or videos.
        """
        return cls(
            points=points, skeleton=skeleton, track=track  # type: ignore[arg-type]
        )

    def numpy(self) -> np.ndarray:
        """Return the instance points as a numpy array."""
        pts = np.full((len(self.skeleton), 2), np.nan)
        for node, point in self.points.items():
            if point.visible:
                pts[self.skeleton.index(node)] = point.numpy()
        return pts

    def update_skeleton(self):
        """Update the points dictionary to match the skeleton.

        Points associated with nodes that are no longer in the skeleton will be removed.

        Additionally, the keys of the points dictionary will be ordered to match the
        order of the nodes in the skeleton.

        Notes:
            This method is useful when the skeleton has been updated (e.g., nodes
            removed or reordered).

            However, it is recommended to use `Labels`-level methods (e.g.,
            `Labels.remove_nodes()`) when manipulating the skeleton as these will
            automatically call this method on every instance.
        """
        # Create a new dictionary to hold the updated points
        new_points = {}

        # Iterate over the nodes in the skeleton
        for node in self.skeleton.nodes:
            # Get the point associated with the node
            point = self.points.get(node, None)

            # If the point is not None, add it to the new dictionary
            if point is not None:
                new_points[node] = point

        # Update the points dictionary
        self.points = new_points

    def replace_skeleton(
        self,
        new_skeleton: Skeleton,
        node_map: dict[NodeOrIndex, NodeOrIndex] | None = None,
        rev_node_map: dict[NodeOrIndex, NodeOrIndex] | None = None,
    ):
        """Replace the skeleton associated with the instance.

        The points dictionary will be updated to match the new skeleton.

        Args:
            new_skeleton: The new `Skeleton` to associate with the instance.
            node_map: Dictionary mapping nodes in the old skeleton to nodes in the new
                skeleton. Keys and values can be specified as `Node` objects, integer
                indices, or string names. If not provided, only nodes with identical
                names will be mapped. Points associated with unmapped nodes will be
                removed.
            rev_node_map: Dictionary mapping nodes in the new skeleton to nodes in the
                old skeleton. This is used internally when calling from
                `Labels.replace_skeleton()` as it is more efficient to compute this
                mapping once and pass it to all instances. No validation is done on this
                mapping, so nodes are expected to be `Node` objects.
        """
        if rev_node_map is None:
            if node_map is None:
                node_map = {}
                for old_node in self.skeleton.nodes:
                    for new_node in new_skeleton.nodes:
                        if old_node.name == new_node.name:
                            node_map[old_node] = new_node
                            break
            else:
                node_map = {
                    self.skeleton.require_node(
                        old, add_missing=False
                    ): new_skeleton.require_node(new, add_missing=False)
                    for old, new in node_map.items()
                }

            # Make new -> old mapping for nodes
            rev_node_map = {new: old for old, new in node_map.items()}

        # Build new points list with mapped nodes
        new_points = {}
        for new_node in new_skeleton.nodes:
            old_node = rev_node_map.get(new_node, None)
            if old_node is not None and old_node in self.points:
                new_points[new_node] = self.points[old_node]

        # Update the skeleton and points
        self.skeleton = new_skeleton
        self.points = new_points

is_empty: bool property

Return True if no points are visible on the instance.

n_visible: int property

Return the number of visible points in the instance.

__attrs_post_init__()

Maintain point mappings between node and points after initialization.

Source code in sleap_io/model/instance.py
def __attrs_post_init__(self):
    """Maintain point mappings between node and points after initialization."""
    super().__setattr__("points", self._convert_points(None, self.points))

__getitem__(node)

Return the point associated with a node or None if not set.

Source code in sleap_io/model/instance.py
def __getitem__(self, node: Union[int, str, Node]) -> Optional[Point]:
    """Return the point associated with a node or `None` if not set."""
    if (type(node) == int) or (type(node) == str):
        node = self.skeleton[node]
    if isinstance(node, Node):
        return self.points.get(node, None)
    else:
        raise IndexError(f"Invalid indexing argument for instance: {node}")

__len__()

Return the number of points in the instance.

Source code in sleap_io/model/instance.py
def __len__(self) -> int:
    """Return the number of points in the instance."""
    return len(self.points)

__repr__()

Return a readable representation of the instance.

Source code in sleap_io/model/instance.py
def __repr__(self) -> str:
    """Return a readable representation of the instance."""
    pts = self.numpy().tolist()
    track = f'"{self.track.name}"' if self.track is not None else self.track

    return f"Instance(points={pts}, track={track})"

from_numpy(points, skeleton, track=None) classmethod

Create an instance object from a numpy array.

Parameters:

Name Type Description Default
points ndarray

A numpy array of shape (n_nodes, 2) corresponding to the points of the skeleton. Values of np.nan indicate "missing" nodes.

required
skeleton Skeleton

The Skeleton that this Instance is associated with. It should have n_nodes nodes.

required
track Optional[Track]

An optional Track associated with a unique animal/object across frames or videos.

None
Source code in sleap_io/model/instance.py
@classmethod
def from_numpy(
    cls, points: np.ndarray, skeleton: Skeleton, track: Optional[Track] = None
) -> "Instance":
    """Create an instance object from a numpy array.

    Args:
        points: A numpy array of shape `(n_nodes, 2)` corresponding to the points of
            the skeleton. Values of `np.nan` indicate "missing" nodes.
        skeleton: The `Skeleton` that this `Instance` is associated with. It should
            have `n_nodes` nodes.
        track: An optional `Track` associated with a unique animal/object across
            frames or videos.
    """
    return cls(
        points=points, skeleton=skeleton, track=track  # type: ignore[arg-type]
    )

numpy()

Return the instance points as a numpy array.

Source code in sleap_io/model/instance.py
def numpy(self) -> np.ndarray:
    """Return the instance points as a numpy array."""
    pts = np.full((len(self.skeleton), 2), np.nan)
    for node, point in self.points.items():
        if point.visible:
            pts[self.skeleton.index(node)] = point.numpy()
    return pts

replace_skeleton(new_skeleton, node_map=None, rev_node_map=None)

Replace the skeleton associated with the instance.

The points dictionary will be updated to match the new skeleton.

Parameters:

Name Type Description Default
new_skeleton Skeleton

The new Skeleton to associate with the instance.

required
node_map dict[NodeOrIndex, NodeOrIndex] | None

Dictionary mapping nodes in the old skeleton to nodes in the new skeleton. Keys and values can be specified as Node objects, integer indices, or string names. If not provided, only nodes with identical names will be mapped. Points associated with unmapped nodes will be removed.

None
rev_node_map dict[NodeOrIndex, NodeOrIndex] | None

Dictionary mapping nodes in the new skeleton to nodes in the old skeleton. This is used internally when calling from Labels.replace_skeleton() as it is more efficient to compute this mapping once and pass it to all instances. No validation is done on this mapping, so nodes are expected to be Node objects.

None
Source code in sleap_io/model/instance.py
def replace_skeleton(
    self,
    new_skeleton: Skeleton,
    node_map: dict[NodeOrIndex, NodeOrIndex] | None = None,
    rev_node_map: dict[NodeOrIndex, NodeOrIndex] | None = None,
):
    """Replace the skeleton associated with the instance.

    The points dictionary will be updated to match the new skeleton.

    Args:
        new_skeleton: The new `Skeleton` to associate with the instance.
        node_map: Dictionary mapping nodes in the old skeleton to nodes in the new
            skeleton. Keys and values can be specified as `Node` objects, integer
            indices, or string names. If not provided, only nodes with identical
            names will be mapped. Points associated with unmapped nodes will be
            removed.
        rev_node_map: Dictionary mapping nodes in the new skeleton to nodes in the
            old skeleton. This is used internally when calling from
            `Labels.replace_skeleton()` as it is more efficient to compute this
            mapping once and pass it to all instances. No validation is done on this
            mapping, so nodes are expected to be `Node` objects.
    """
    if rev_node_map is None:
        if node_map is None:
            node_map = {}
            for old_node in self.skeleton.nodes:
                for new_node in new_skeleton.nodes:
                    if old_node.name == new_node.name:
                        node_map[old_node] = new_node
                        break
        else:
            node_map = {
                self.skeleton.require_node(
                    old, add_missing=False
                ): new_skeleton.require_node(new, add_missing=False)
                for old, new in node_map.items()
            }

        # Make new -> old mapping for nodes
        rev_node_map = {new: old for old, new in node_map.items()}

    # Build new points list with mapped nodes
    new_points = {}
    for new_node in new_skeleton.nodes:
        old_node = rev_node_map.get(new_node, None)
        if old_node is not None and old_node in self.points:
            new_points[new_node] = self.points[old_node]

    # Update the skeleton and points
    self.skeleton = new_skeleton
    self.points = new_points

update_skeleton()

Update the points dictionary to match the skeleton.

Points associated with nodes that are no longer in the skeleton will be removed.

Additionally, the keys of the points dictionary will be ordered to match the order of the nodes in the skeleton.

Notes

This method is useful when the skeleton has been updated (e.g., nodes removed or reordered).

However, it is recommended to use Labels-level methods (e.g., Labels.remove_nodes()) when manipulating the skeleton as these will automatically call this method on every instance.

Source code in sleap_io/model/instance.py
def update_skeleton(self):
    """Update the points dictionary to match the skeleton.

    Points associated with nodes that are no longer in the skeleton will be removed.

    Additionally, the keys of the points dictionary will be ordered to match the
    order of the nodes in the skeleton.

    Notes:
        This method is useful when the skeleton has been updated (e.g., nodes
        removed or reordered).

        However, it is recommended to use `Labels`-level methods (e.g.,
        `Labels.remove_nodes()`) when manipulating the skeleton as these will
        automatically call this method on every instance.
    """
    # Create a new dictionary to hold the updated points
    new_points = {}

    # Iterate over the nodes in the skeleton
    for node in self.skeleton.nodes:
        # Get the point associated with the node
        point = self.points.get(node, None)

        # If the point is not None, add it to the new dictionary
        if point is not None:
            new_points[node] = point

    # Update the points dictionary
    self.points = new_points

sleap_io.PredictedInstance

Bases: Instance

A PredictedInstance is an Instance that was predicted using a model.

Attributes:

Name Type Description
skeleton

The Skeleton that this Instance is associated with.

points

A dictionary where keys are Skeleton nodes and values are Points.

track

An optional Track associated with a unique animal/object across frames or videos.

from_predicted Optional[PredictedInstance]

Not applicable in PredictedInstances (must be set to None).

score float

The instance detection or part grouping prediction score. This is a scalar that represents the confidence with which this entire instance was predicted. This may not always be applicable depending on the model type.

tracking_score Optional[float]

The score associated with the Track assignment. This is typically the value from the score matrix used in an identity assignment.

Methods:

Name Description
__repr__

Return a readable representation of the instance.

from_numpy

Create an instance object from a numpy array.

numpy

Return the instance points as a numpy array.

Source code in sleap_io/model/instance.py
@define
class PredictedInstance(Instance):
    """A `PredictedInstance` is an `Instance` that was predicted using a model.

    Attributes:
        skeleton: The `Skeleton` that this `Instance` is associated with.
        points: A dictionary where keys are `Skeleton` nodes and values are `Point`s.
        track: An optional `Track` associated with a unique animal/object across frames
            or videos.
        from_predicted: Not applicable in `PredictedInstance`s (must be set to `None`).
        score: The instance detection or part grouping prediction score. This is a
            scalar that represents the confidence with which this entire instance was
            predicted. This may not always be applicable depending on the model type.
        tracking_score: The score associated with the `Track` assignment. This is
            typically the value from the score matrix used in an identity assignment.
    """

    _POINT_TYPE = PredictedPoint

    from_predicted: Optional[PredictedInstance] = field(
        default=None, validator=validators.instance_of(type(None))
    )
    score: float = 0.0
    tracking_score: Optional[float] = 0

    def __repr__(self) -> str:
        """Return a readable representation of the instance."""
        pts = self.numpy().tolist()
        track = f'"{self.track.name}"' if self.track is not None else self.track

        score = str(self.score) if self.score is None else f"{self.score:.2f}"
        tracking_score = (
            str(self.tracking_score)
            if self.tracking_score is None
            else f"{self.tracking_score:.2f}"
        )
        return (
            f"PredictedInstance(points={pts}, track={track}, "
            f"score={score}, tracking_score={tracking_score})"
        )

    @classmethod
    def from_numpy(  # type: ignore[override]
        cls,
        points: np.ndarray,
        point_scores: np.ndarray,
        instance_score: float,
        skeleton: Skeleton,
        tracking_score: Optional[float] = None,
        track: Optional[Track] = None,
    ) -> "PredictedInstance":
        """Create an instance object from a numpy array.

        Args:
            points: A numpy array of shape `(n_nodes, 2)` corresponding to the points of
                the skeleton. Values of `np.nan` indicate "missing" nodes.
            point_scores: The points-level prediction score. This is an array that
                represents the confidence with which each point in the instance was
                predicted. This may not always be applicable depending on the model
                type.
            instance_score: The instance detection or part grouping prediction score.
                This is a scalar that represents the confidence with which this entire
                instance was predicted. This may not always be applicable depending on
                the model type.
            skeleton: The `Skeleton` that this `Instance` is associated with. It should
                have `n_nodes` nodes.
            tracking_score: The score associated with the `Track` assignment. This is
                typically the value from the score matrix used in an identity
                assignment.
            track: An optional `Track` associated with a unique animal/object across
                frames or videos.
        """
        node_points = {
            node: PredictedPoint(pt[0], pt[1], score=score)
            for node, pt, score in zip(skeleton.nodes, points, point_scores)
        }
        return cls(
            points=node_points,
            skeleton=skeleton,
            score=instance_score,
            tracking_score=tracking_score,
            track=track,
        )

    def numpy(self, scores: bool = False) -> np.ndarray:
        """Return the instance points as a numpy array."""
        pts = np.full((len(self.skeleton), 3), np.nan)
        for node, point in self.points.items():
            if point.visible:
                pts[self.skeleton.index(node)] = point.numpy()
        if not scores:
            pts = pts[:, :2]
        return pts

__repr__()

Return a readable representation of the instance.

Source code in sleap_io/model/instance.py
def __repr__(self) -> str:
    """Return a readable representation of the instance."""
    pts = self.numpy().tolist()
    track = f'"{self.track.name}"' if self.track is not None else self.track

    score = str(self.score) if self.score is None else f"{self.score:.2f}"
    tracking_score = (
        str(self.tracking_score)
        if self.tracking_score is None
        else f"{self.tracking_score:.2f}"
    )
    return (
        f"PredictedInstance(points={pts}, track={track}, "
        f"score={score}, tracking_score={tracking_score})"
    )

from_numpy(points, point_scores, instance_score, skeleton, tracking_score=None, track=None) classmethod

Create an instance object from a numpy array.

Parameters:

Name Type Description Default
points ndarray

A numpy array of shape (n_nodes, 2) corresponding to the points of the skeleton. Values of np.nan indicate "missing" nodes.

required
point_scores ndarray

The points-level prediction score. This is an array that represents the confidence with which each point in the instance was predicted. This may not always be applicable depending on the model type.

required
instance_score float

The instance detection or part grouping prediction score. This is a scalar that represents the confidence with which this entire instance was predicted. This may not always be applicable depending on the model type.

required
skeleton Skeleton

The Skeleton that this Instance is associated with. It should have n_nodes nodes.

required
tracking_score Optional[float]

The score associated with the Track assignment. This is typically the value from the score matrix used in an identity assignment.

None
track Optional[Track]

An optional Track associated with a unique animal/object across frames or videos.

None
Source code in sleap_io/model/instance.py
@classmethod
def from_numpy(  # type: ignore[override]
    cls,
    points: np.ndarray,
    point_scores: np.ndarray,
    instance_score: float,
    skeleton: Skeleton,
    tracking_score: Optional[float] = None,
    track: Optional[Track] = None,
) -> "PredictedInstance":
    """Create an instance object from a numpy array.

    Args:
        points: A numpy array of shape `(n_nodes, 2)` corresponding to the points of
            the skeleton. Values of `np.nan` indicate "missing" nodes.
        point_scores: The points-level prediction score. This is an array that
            represents the confidence with which each point in the instance was
            predicted. This may not always be applicable depending on the model
            type.
        instance_score: The instance detection or part grouping prediction score.
            This is a scalar that represents the confidence with which this entire
            instance was predicted. This may not always be applicable depending on
            the model type.
        skeleton: The `Skeleton` that this `Instance` is associated with. It should
            have `n_nodes` nodes.
        tracking_score: The score associated with the `Track` assignment. This is
            typically the value from the score matrix used in an identity
            assignment.
        track: An optional `Track` associated with a unique animal/object across
            frames or videos.
    """
    node_points = {
        node: PredictedPoint(pt[0], pt[1], score=score)
        for node, pt, score in zip(skeleton.nodes, points, point_scores)
    }
    return cls(
        points=node_points,
        skeleton=skeleton,
        score=instance_score,
        tracking_score=tracking_score,
        track=track,
    )

numpy(scores=False)

Return the instance points as a numpy array.

Source code in sleap_io/model/instance.py
def numpy(self, scores: bool = False) -> np.ndarray:
    """Return the instance points as a numpy array."""
    pts = np.full((len(self.skeleton), 3), np.nan)
    for node, point in self.points.items():
        if point.visible:
            pts[self.skeleton.index(node)] = point.numpy()
    if not scores:
        pts = pts[:, :2]
    return pts

sleap_io.Point

A 2D spatial landmark and metadata associated with annotation.

Attributes:

Name Type Description
x float

The horizontal pixel location of point in image coordinates.

y float

The vertical pixel location of point in image coordinates.

visible bool

Whether point is visible in the image or not.

complete bool

Has the point been verified by the user labeler.

Class variables

eq_atol: Controls absolute tolerence allowed in x and y when comparing two Points for equality. eq_rtol: Controls relative tolerence allowed in x and y when comparing two Points for equality.

Methods:

Name Description
__eq__

Compare self and other for equality.

numpy

Return the coordinates as a numpy array of shape (2,).

Source code in sleap_io/model/instance.py
@define
class Point:
    """A 2D spatial landmark and metadata associated with annotation.

    Attributes:
        x: The horizontal pixel location of point in image coordinates.
        y: The vertical pixel location of point in image coordinates.
        visible: Whether point is visible in the image or not.
        complete: Has the point been verified by the user labeler.

    Class variables:
        eq_atol: Controls absolute tolerence allowed in `x` and `y` when comparing two
            `Point`s for equality.
        eq_rtol: Controls relative tolerence allowed in `x` and `y` when comparing two
            `Point`s for equality.

    """

    eq_atol: ClassVar[float] = 1e-08
    eq_rtol: ClassVar[float] = 0

    x: float
    y: float
    visible: bool = True
    complete: bool = False

    def __eq__(self, other: object) -> bool:
        """Compare `self` and `other` for equality.

        Precision error between the respective `x` and `y` properties of two
        instances may be allowed or controlled via the `Point.eq_atol` and
        `Point.eq_rtol` class variables. Set to zero to disable their effect.
        Internally, `numpy.isclose()` is used for the comparison:
        https://numpy.org/doc/stable/reference/generated/numpy.isclose.html

        Args:
            other: Instance of `Point` to compare to.

        Returns:
            Returns True if all attributes of `self` and `other` are the identical
                (possibly allowing precision error for `x` and `y` attributes).
        """
        # Check that other is a Point.
        if type(other) is not type(self):
            return False

        # We know that we have some kind of point at this point.
        other = cast(Point, other)

        return bool(
            np.all(
                np.isclose(
                    [self.x, self.y],
                    [other.x, other.y],
                    rtol=Point.eq_rtol,
                    atol=Point.eq_atol,
                    equal_nan=True,
                )
            )
            and (self.visible == other.visible)
            and (self.complete == other.complete)
        )

    def numpy(self) -> np.ndarray:
        """Return the coordinates as a numpy array of shape `(2,)`."""
        return np.array([self.x, self.y]) if self.visible else np.full((2,), np.nan)

__eq__(other)

Compare self and other for equality.

Precision error between the respective x and y properties of two instances may be allowed or controlled via the Point.eq_atol and Point.eq_rtol class variables. Set to zero to disable their effect. Internally, numpy.isclose() is used for the comparison: https://numpy.org/doc/stable/reference/generated/numpy.isclose.html

Parameters:

Name Type Description Default
other object

Instance of Point to compare to.

required

Returns:

Type Description
bool

Returns True if all attributes of self and other are the identical (possibly allowing precision error for x and y attributes).

Source code in sleap_io/model/instance.py
def __eq__(self, other: object) -> bool:
    """Compare `self` and `other` for equality.

    Precision error between the respective `x` and `y` properties of two
    instances may be allowed or controlled via the `Point.eq_atol` and
    `Point.eq_rtol` class variables. Set to zero to disable their effect.
    Internally, `numpy.isclose()` is used for the comparison:
    https://numpy.org/doc/stable/reference/generated/numpy.isclose.html

    Args:
        other: Instance of `Point` to compare to.

    Returns:
        Returns True if all attributes of `self` and `other` are the identical
            (possibly allowing precision error for `x` and `y` attributes).
    """
    # Check that other is a Point.
    if type(other) is not type(self):
        return False

    # We know that we have some kind of point at this point.
    other = cast(Point, other)

    return bool(
        np.all(
            np.isclose(
                [self.x, self.y],
                [other.x, other.y],
                rtol=Point.eq_rtol,
                atol=Point.eq_atol,
                equal_nan=True,
            )
        )
        and (self.visible == other.visible)
        and (self.complete == other.complete)
    )

numpy()

Return the coordinates as a numpy array of shape (2,).

Source code in sleap_io/model/instance.py
def numpy(self) -> np.ndarray:
    """Return the coordinates as a numpy array of shape `(2,)`."""
    return np.array([self.x, self.y]) if self.visible else np.full((2,), np.nan)

sleap_io.PredictedPoint

Bases: Point

A predicted point with associated score generated by a prediction model.

It has all the properties of a labeled Point, plus a score.

Attributes:

Name Type Description
x

The horizontal pixel location of point within image frame.

y

The vertical pixel location of point within image frame.

visible

Whether point is visible in the image or not.

complete

Has the point been verified by the user labeler.

score float

The point-level prediction score. This is typically the confidence and set to a value between 0 and 1.

Methods:

Name Description
__eq__

Compare self and other for equality.

numpy

Return the coordinates and score as a numpy array of shape (3,).

Source code in sleap_io/model/instance.py
@define
class PredictedPoint(Point):
    """A predicted point with associated score generated by a prediction model.

    It has all the properties of a labeled `Point`, plus a `score`.

    Attributes:
        x: The horizontal pixel location of point within image frame.
        y: The vertical pixel location of point within image frame.
        visible: Whether point is visible in the image or not.
        complete: Has the point been verified by the user labeler.
        score: The point-level prediction score. This is typically the confidence and
            set to a value between 0 and 1.
    """

    score: float = 0.0

    def numpy(self) -> np.ndarray:
        """Return the coordinates and score as a numpy array of shape `(3,)`."""
        return (
            np.array([self.x, self.y, self.score])
            if self.visible
            else np.full((3,), np.nan)
        )

    def __eq__(self, other: object) -> bool:
        """Compare `self` and `other` for equality.

        See `Point.__eq__()` for important notes about point equality semantics!

        Args:
            other: Instance of `PredictedPoint` to compare

        Returns:
            Returns True if all attributes of `self` and `other` are the identical
                (possibly allowing precision error for `x` and `y` attributes).
        """
        if not super().__eq__(other):
            return False

        # we know that we have a point at this point
        other = cast(PredictedPoint, other)

        return self.score == other.score

__eq__(other)

Compare self and other for equality.

See Point.__eq__() for important notes about point equality semantics!

Parameters:

Name Type Description Default
other object

Instance of PredictedPoint to compare

required

Returns:

Type Description
bool

Returns True if all attributes of self and other are the identical (possibly allowing precision error for x and y attributes).

Source code in sleap_io/model/instance.py
def __eq__(self, other: object) -> bool:
    """Compare `self` and `other` for equality.

    See `Point.__eq__()` for important notes about point equality semantics!

    Args:
        other: Instance of `PredictedPoint` to compare

    Returns:
        Returns True if all attributes of `self` and `other` are the identical
            (possibly allowing precision error for `x` and `y` attributes).
    """
    if not super().__eq__(other):
        return False

    # we know that we have a point at this point
    other = cast(PredictedPoint, other)

    return self.score == other.score

numpy()

Return the coordinates and score as a numpy array of shape (3,).

Source code in sleap_io/model/instance.py
def numpy(self) -> np.ndarray:
    """Return the coordinates and score as a numpy array of shape `(3,)`."""
    return (
        np.array([self.x, self.y, self.score])
        if self.visible
        else np.full((3,), np.nan)
    )

sleap_io.Skeleton

A description of a set of landmark types and connections between them.

Skeletons are represented by a directed graph composed of a set of Nodes (landmark types such as body parts) and Edges (connections between parts).

Attributes:

Name Type Description
nodes list[Node]

A list of Nodes. May be specified as a list of strings to create new nodes from their names.

edges list[Edge]

A list of Edges. May be specified as a list of 2-tuples of string names or integer indices of nodes. Each edge corresponds to a pair of source and destination nodes forming a directed edge.

symmetries list[Symmetry]

A list of Symmetrys. Each symmetry corresponds to symmetric body parts, such as "left eye", "right eye". This is used when applying flip (reflection) augmentation to images in order to appropriately swap the indices of symmetric landmarks.

name str | None

A descriptive name for the Skeleton.

Methods:

Name Description
__attrs_post_init__

Ensure nodes are Nodes, edges are Edges, and Node map is updated.

__contains__

Check if a node is in the skeleton.

__getitem__

Return a Node when indexing by name or integer.

__len__

Return the number of nodes in the skeleton.

__repr__

Return a readable representation of the skeleton.

add_edge

Add an Edge to the skeleton.

add_edges

Add multiple Edges to the skeleton.

add_node

Add a Node to the skeleton.

add_nodes

Add multiple Nodes to the skeleton.

add_symmetry

Add a symmetry relationship to the skeleton.

get_flipped_node_inds

Returns node indices that should be switched when horizontally flipping.

index

Return the index of a node specified as a Node or string name.

rebuild_cache

Rebuild the node name/index to Node map caches.

remove_node

Remove a single node from the skeleton.

remove_nodes

Remove nodes from the skeleton.

rename_node

Rename a single node in the skeleton.

rename_nodes

Rename nodes in the skeleton.

reorder_nodes

Reorder nodes in the skeleton.

require_node

Return a Node object, handling indexing and adding missing nodes.

Attributes:

Name Type Description
edge_inds list[tuple[int, int]]

Edges indices as a list of 2-tuples.

edge_names list[str, str]

Edge names as a list of 2-tuples with string node names.

node_names list[str]

Names of the nodes associated with this skeleton as a list of strings.

symmetry_inds list[tuple[int, int]]

Symmetry indices as a list of 2-tuples.

symmetry_names list[str, str]

Symmetry names as a list of 2-tuples with string node names.

Source code in sleap_io/model/skeleton.py
@define(eq=False)
class Skeleton:
    """A description of a set of landmark types and connections between them.

    Skeletons are represented by a directed graph composed of a set of `Node`s (landmark
    types such as body parts) and `Edge`s (connections between parts).

    Attributes:
        nodes: A list of `Node`s. May be specified as a list of strings to create new
            nodes from their names.
        edges: A list of `Edge`s. May be specified as a list of 2-tuples of string names
            or integer indices of `nodes`. Each edge corresponds to a pair of source and
            destination nodes forming a directed edge.
        symmetries: A list of `Symmetry`s. Each symmetry corresponds to symmetric body
            parts, such as `"left eye", "right eye"`. This is used when applying flip
            (reflection) augmentation to images in order to appropriately swap the
            indices of symmetric landmarks.
        name: A descriptive name for the `Skeleton`.
    """

    def _nodes_on_setattr(self, attr, new_nodes):
        """Callback to update caches when nodes are set."""
        self.rebuild_cache(nodes=new_nodes)
        return new_nodes

    nodes: list[Node] = field(
        factory=list,
        on_setattr=_nodes_on_setattr,
    )
    edges: list[Edge] = field(factory=list)
    symmetries: list[Symmetry] = field(factory=list)
    name: str | None = None
    _name_to_node_cache: dict[str, Node] = field(init=False, repr=False, eq=False)
    _node_to_ind_cache: dict[Node, int] = field(init=False, repr=False, eq=False)

    def __attrs_post_init__(self):
        """Ensure nodes are `Node`s, edges are `Edge`s, and `Node` map is updated."""
        self._convert_nodes()
        self._convert_edges()
        self.rebuild_cache()

    def _convert_nodes(self):
        """Convert nodes to `Node` objects if needed."""
        if isinstance(self.nodes, np.ndarray):
            object.__setattr__(self, "nodes", self.nodes.tolist())
        for i, node in enumerate(self.nodes):
            if type(node) == str:
                self.nodes[i] = Node(node)

    def _convert_edges(self):
        """Convert list of edge names or integers to `Edge` objects if needed."""
        if isinstance(self.edges, np.ndarray):
            self.edges = self.edges.tolist()
        node_names = self.node_names
        for i, edge in enumerate(self.edges):
            if type(edge) == Edge:
                continue
            src, dst = edge
            if type(src) == str:
                try:
                    src = node_names.index(src)
                except ValueError:
                    raise ValueError(
                        f"Node '{src}' specified in the edge list is not in the nodes."
                    )
            if type(src) == int or (
                np.isscalar(src) and np.issubdtype(src.dtype, np.integer)
            ):
                src = self.nodes[src]

            if type(dst) == str:
                try:
                    dst = node_names.index(dst)
                except ValueError:
                    raise ValueError(
                        f"Node '{dst}' specified in the edge list is not in the nodes."
                    )
            if type(dst) == int or (
                np.isscalar(dst) and np.issubdtype(dst.dtype, np.integer)
            ):
                dst = self.nodes[dst]

            self.edges[i] = Edge(src, dst)

    def rebuild_cache(self, nodes: list[Node] | None = None):
        """Rebuild the node name/index to `Node` map caches.

        Args:
            nodes: A list of `Node` objects to update the cache with. If not provided,
                the cache will be updated with the current nodes in the skeleton. If
                nodes are provided, the cache will be updated with the provided nodes,
                but the current nodes in the skeleton will not be updated. Default is
                `None`.

        Notes:
            This function should be called when nodes or node list is mutated to update
            the lookup caches for indexing nodes by name or `Node` object.

            This is done automatically when nodes are added or removed from the skeleton
            using the convenience methods in this class.

            This method only needs to be used when manually mutating nodes or the node
            list directly.
        """
        if nodes is None:
            nodes = self.nodes
        self._name_to_node_cache = {node.name: node for node in nodes}
        self._node_to_ind_cache = {node: i for i, node in enumerate(nodes)}

    @property
    def node_names(self) -> list[str]:
        """Names of the nodes associated with this skeleton as a list of strings."""
        return [node.name for node in self.nodes]

    @property
    def edge_inds(self) -> list[tuple[int, int]]:
        """Edges indices as a list of 2-tuples."""
        return [
            (self.nodes.index(edge.source), self.nodes.index(edge.destination))
            for edge in self.edges
        ]

    @property
    def edge_names(self) -> list[str, str]:
        """Edge names as a list of 2-tuples with string node names."""
        return [(edge.source.name, edge.destination.name) for edge in self.edges]

    @property
    def symmetry_inds(self) -> list[tuple[int, int]]:
        """Symmetry indices as a list of 2-tuples."""
        return [
            tuple(sorted((self.index(symmetry[0]), self.index(symmetry[1]))))
            for symmetry in self.symmetries
        ]

    @property
    def symmetry_names(self) -> list[str, str]:
        """Symmetry names as a list of 2-tuples with string node names."""
        return [
            (self.nodes[i].name, self.nodes[j].name) for (i, j) in self.symmetry_inds
        ]

    def get_flipped_node_inds(self) -> list[int]:
        """Returns node indices that should be switched when horizontally flipping.

        This is useful as a lookup table for flipping the landmark coordinates when
        doing data augmentation.

        Example:
            >>> skel = Skeleton(["A", "B_left", "B_right", "C", "D_left", "D_right"])
            >>> skel.add_symmetry("B_left", "B_right")
            >>> skel.add_symmetry("D_left", "D_right")
            >>> skel.flipped_node_inds
            [0, 2, 1, 3, 5, 4]
            >>> pose = np.array([[0, 0], [1, 1], [2, 2], [3, 3], [4, 4], [5, 5]])
            >>> pose[skel.flipped_node_inds]
            array([[0, 0],
                   [2, 2],
                   [1, 1],
                   [3, 3],
                   [5, 5],
                   [4, 4]])
        """
        flip_idx = np.arange(len(self.nodes))
        if len(self.symmetries) > 0:
            symmetry_inds = np.array(
                [(self.index(a), self.index(b)) for a, b in self.symmetries]
            )
            flip_idx[symmetry_inds[:, 0]] = symmetry_inds[:, 1]
            flip_idx[symmetry_inds[:, 1]] = symmetry_inds[:, 0]

        flip_idx = flip_idx.tolist()
        return flip_idx

    def __len__(self) -> int:
        """Return the number of nodes in the skeleton."""
        return len(self.nodes)

    def __repr__(self) -> str:
        """Return a readable representation of the skeleton."""
        nodes = ", ".join([f'"{node}"' for node in self.node_names])
        return "Skeleton(" f"nodes=[{nodes}], " f"edges={self.edge_inds}" ")"

    def index(self, node: Node | str) -> int:
        """Return the index of a node specified as a `Node` or string name."""
        if type(node) == str:
            return self.index(self._name_to_node_cache[node])
        elif type(node) == Node:
            return self._node_to_ind_cache[node]
        else:
            raise IndexError(f"Invalid indexing argument for skeleton: {node}")

    def __getitem__(self, idx: NodeOrIndex) -> Node:
        """Return a `Node` when indexing by name or integer."""
        if type(idx) == int:
            return self.nodes[idx]
        elif type(idx) == str:
            return self._name_to_node_cache[idx]
        else:
            raise IndexError(f"Invalid indexing argument for skeleton: {idx}")

    def __contains__(self, node: NodeOrIndex) -> bool:
        """Check if a node is in the skeleton."""
        if type(node) == str:
            return node in self._name_to_node_cache
        elif type(node) == Node:
            return node in self.nodes
        elif type(node) == int:
            return 0 <= node < len(self.nodes)
        else:
            raise ValueError(f"Invalid node type for skeleton: {node}")

    def add_node(self, node: Node | str):
        """Add a `Node` to the skeleton.

        Args:
            node: A `Node` object or a string name to create a new node.

        Raises:
            ValueError: If the node already exists in the skeleton or if the node is
                not specified as a `Node` or string.
        """
        if node in self:
            raise ValueError(f"Node '{node}' already exists in the skeleton.")

        if type(node) == str:
            node = Node(node)

        if type(node) != Node:
            raise ValueError(f"Invalid node type: {node} ({type(node)})")

        self.nodes.append(node)

        # Atomic update of the cache.
        self._name_to_node_cache[node.name] = node
        self._node_to_ind_cache[node] = len(self.nodes) - 1

    def add_nodes(self, nodes: list[Node | str]):
        """Add multiple `Node`s to the skeleton.

        Args:
            nodes: A list of `Node` objects or string names to create new nodes.
        """
        for node in nodes:
            self.add_node(node)

    def require_node(self, node: NodeOrIndex, add_missing: bool = True) -> Node:
        """Return a `Node` object, handling indexing and adding missing nodes.

        Args:
            node: A `Node` object, name or index.
            add_missing: If `True`, missing nodes will be added to the skeleton. If
                `False`, an error will be raised if the node is not found. Default is
                `True`.

        Returns:
            The `Node` object.

        Raises:
            IndexError: If the node is not found in the skeleton and `add_missing` is
                `False`.
        """
        if node not in self:
            if add_missing:
                self.add_node(node)
            else:
                raise IndexError(f"Node '{node}' not found in the skeleton.")

        if type(node) == Node:
            return node

        return self[node]

    def add_edge(
        self,
        src: NodeOrIndex | Edge | tuple[NodeOrIndex, NodeOrIndex],
        dst: NodeOrIndex | None = None,
    ):
        """Add an `Edge` to the skeleton.

        Args:
            src: The source node specified as a `Node`, name or index.
            dst: The destination node specified as a `Node`, name or index.
        """
        edge = None
        if type(src) == tuple:
            src, dst = src

        if is_node_or_index(src):
            if not is_node_or_index(dst):
                raise ValueError("Destination node must be specified.")

            src = self.require_node(src)
            dst = self.require_node(dst)
            edge = Edge(src, dst)

        if type(src) == Edge:
            edge = src

        if edge not in self.edges:
            self.edges.append(edge)

    def add_edges(self, edges: list[Edge | tuple[NodeOrIndex, NodeOrIndex]]):
        """Add multiple `Edge`s to the skeleton.

        Args:
            edges: A list of `Edge` objects or 2-tuples of source and destination nodes.
        """
        for edge in edges:
            self.add_edge(edge)

    def add_symmetry(
        self, node1: Symmetry | NodeOrIndex = None, node2: NodeOrIndex | None = None
    ):
        """Add a symmetry relationship to the skeleton.

        Args:
            node1: The first node specified as a `Node`, name or index. If a `Symmetry`
                object is provided, it will be added directly to the skeleton.
            node2: The second node specified as a `Node`, name or index.
        """
        symmetry = None
        if type(node1) == Symmetry:
            symmetry = node1
            node1, node2 = symmetry

        node1 = self.require_node(node1)
        node2 = self.require_node(node2)

        if symmetry is None:
            symmetry = Symmetry({node1, node2})

        if symmetry not in self.symmetries:
            self.symmetries.append(symmetry)

    def rename_nodes(self, name_map: dict[NodeOrIndex, str] | list[str]):
        """Rename nodes in the skeleton.

        Args:
            name_map: A dictionary mapping old node names to new node names. Keys can be
                specified as `Node` objects, integer indices, or string names. Values
                must be specified as string names.

                If a list of strings is provided of the same length as the current
                nodes, the nodes will be renamed to the names in the list in order.

        Raises:
            ValueError: If the new node names exist in the skeleton or if the old node
                names are not found in the skeleton.

        Notes:
            This method should always be used when renaming nodes in the skeleton as it
            handles updating the lookup caches necessary for indexing nodes by name.

            After renaming, instances using this skeleton **do NOT need to be updated**
            as the nodes are stored by reference in the skeleton, so changes are
            reflected automatically.

        Example:
            >>> skel = Skeleton(["A", "B", "C"], edges=[("A", "B"), ("B", "C")])
            >>> skel.rename_nodes({"A": "X", "B": "Y", "C": "Z"})
            >>> skel.node_names
            ["X", "Y", "Z"]
            >>> skel.rename_nodes(["a", "b", "c"])
            >>> skel.node_names
            ["a", "b", "c"]
        """
        if type(name_map) == list:
            if len(name_map) != len(self.nodes):
                raise ValueError(
                    "List of new node names must be the same length as the current "
                    "nodes."
                )
            name_map = {node: name for node, name in zip(self.nodes, name_map)}

        for old_name, new_name in name_map.items():
            if type(old_name) == Node:
                old_name = old_name.name
            if type(old_name) == int:
                old_name = self.nodes[old_name].name

            if old_name not in self._name_to_node_cache:
                raise ValueError(f"Node '{old_name}' not found in the skeleton.")
            if new_name in self._name_to_node_cache:
                raise ValueError(f"Node '{new_name}' already exists in the skeleton.")

            node = self._name_to_node_cache[old_name]
            node.name = new_name
            self._name_to_node_cache[new_name] = node
            del self._name_to_node_cache[old_name]

    def rename_node(self, old_name: NodeOrIndex, new_name: str):
        """Rename a single node in the skeleton.

        Args:
            old_name: The name of the node to rename. Can also be specified as an
                integer index or `Node` object.
            new_name: The new name for the node.
        """
        self.rename_nodes({old_name: new_name})

    def remove_nodes(self, nodes: list[NodeOrIndex]):
        """Remove nodes from the skeleton.

        Args:
            nodes: A list of node names, indices, or `Node` objects to remove.

        Notes:
            This method handles updating the lookup caches necessary for indexing nodes
            by name.

            Any edges and symmetries that are connected to the removed nodes will also
            be removed.

        Warning:
            **This method does NOT update instances** that use this skeleton to reflect
            changes.

            It is recommended to use the `Labels.remove_nodes()` method which will
            update all contained to reflect the changes made to the skeleton.

            To manually update instances after this method is called, call
            `instance.update_nodes()` on each instance that uses this skeleton.
        """
        # Standardize input and make a pre-mutation copy before keys are changed.
        rm_node_objs = [self.require_node(node, add_missing=False) for node in nodes]

        # Remove nodes from the skeleton.
        for node in rm_node_objs:
            self.nodes.remove(node)
            del self._name_to_node_cache[node.name]

        # Remove edges connected to the removed nodes.
        self.edges = [
            edge
            for edge in self.edges
            if edge.source not in rm_node_objs and edge.destination not in rm_node_objs
        ]

        # Remove symmetries connected to the removed nodes.
        self.symmetries = [
            symmetry
            for symmetry in self.symmetries
            if symmetry.nodes.isdisjoint(rm_node_objs)
        ]

        # Update node index map.
        self.rebuild_cache()

    def remove_node(self, node: NodeOrIndex):
        """Remove a single node from the skeleton.

        Args:
            node: The node to remove. Can be specified as a string name, integer index,
                or `Node` object.

        Notes:
            This method handles updating the lookup caches necessary for indexing nodes
            by name.

            Any edges and symmetries that are connected to the removed node will also be
            removed.

        Warning:
            **This method does NOT update instances** that use this skeleton to reflect
            changes.

            It is recommended to use the `Labels.remove_nodes()` method which will
            update all contained instances to reflect the changes made to the skeleton.

            To manually update instances after this method is called, call
            `Instance.update_skeleton()` on each instance that uses this skeleton.
        """
        self.remove_nodes([node])

    def reorder_nodes(self, new_order: list[NodeOrIndex]):
        """Reorder nodes in the skeleton.

        Args:
            new_order: A list of node names, indices, or `Node` objects specifying the
                new order of the nodes.

        Raises:
            ValueError: If the new order of nodes is not the same length as the current
                nodes.

        Notes:
            This method handles updating the lookup caches necessary for indexing nodes
            by name.

        Warning:
            After reordering, instances using this skeleton do not need to be updated as
            the nodes are stored by reference in the skeleton.

            However, the order that points are stored in the instances will not be
            updated to match the new order of the nodes in the skeleton. This should not
            matter unless the ordering of the keys in the `Instance.points` dictionary
            is used instead of relying on the skeleton node order.

            To make sure these are aligned, it is recommended to use the
            `Labels.reorder_nodes()` method which will update all contained instances to
            reflect the changes made to the skeleton.

            To manually update instances after this method is called, call
            `Instance.update_skeleton()` on each instance that uses this skeleton.
        """
        if len(new_order) != len(self.nodes):
            raise ValueError(
                "New order of nodes must be the same length as the current nodes."
            )

        new_nodes = [self.require_node(node, add_missing=False) for node in new_order]
        self.nodes = new_nodes

edge_inds: list[tuple[int, int]] property

Edges indices as a list of 2-tuples.

edge_names: list[str, str] property

Edge names as a list of 2-tuples with string node names.

node_names: list[str] property

Names of the nodes associated with this skeleton as a list of strings.

symmetry_inds: list[tuple[int, int]] property

Symmetry indices as a list of 2-tuples.

symmetry_names: list[str, str] property

Symmetry names as a list of 2-tuples with string node names.

__attrs_post_init__()

Ensure nodes are Nodes, edges are Edges, and Node map is updated.

Source code in sleap_io/model/skeleton.py
def __attrs_post_init__(self):
    """Ensure nodes are `Node`s, edges are `Edge`s, and `Node` map is updated."""
    self._convert_nodes()
    self._convert_edges()
    self.rebuild_cache()

__contains__(node)

Check if a node is in the skeleton.

Source code in sleap_io/model/skeleton.py
def __contains__(self, node: NodeOrIndex) -> bool:
    """Check if a node is in the skeleton."""
    if type(node) == str:
        return node in self._name_to_node_cache
    elif type(node) == Node:
        return node in self.nodes
    elif type(node) == int:
        return 0 <= node < len(self.nodes)
    else:
        raise ValueError(f"Invalid node type for skeleton: {node}")

__getitem__(idx)

Return a Node when indexing by name or integer.

Source code in sleap_io/model/skeleton.py
def __getitem__(self, idx: NodeOrIndex) -> Node:
    """Return a `Node` when indexing by name or integer."""
    if type(idx) == int:
        return self.nodes[idx]
    elif type(idx) == str:
        return self._name_to_node_cache[idx]
    else:
        raise IndexError(f"Invalid indexing argument for skeleton: {idx}")

__len__()

Return the number of nodes in the skeleton.

Source code in sleap_io/model/skeleton.py
def __len__(self) -> int:
    """Return the number of nodes in the skeleton."""
    return len(self.nodes)

__repr__()

Return a readable representation of the skeleton.

Source code in sleap_io/model/skeleton.py
def __repr__(self) -> str:
    """Return a readable representation of the skeleton."""
    nodes = ", ".join([f'"{node}"' for node in self.node_names])
    return "Skeleton(" f"nodes=[{nodes}], " f"edges={self.edge_inds}" ")"

add_edge(src, dst=None)

Add an Edge to the skeleton.

Parameters:

Name Type Description Default
src NodeOrIndex | Edge | tuple[NodeOrIndex, NodeOrIndex]

The source node specified as a Node, name or index.

required
dst NodeOrIndex | None

The destination node specified as a Node, name or index.

None
Source code in sleap_io/model/skeleton.py
def add_edge(
    self,
    src: NodeOrIndex | Edge | tuple[NodeOrIndex, NodeOrIndex],
    dst: NodeOrIndex | None = None,
):
    """Add an `Edge` to the skeleton.

    Args:
        src: The source node specified as a `Node`, name or index.
        dst: The destination node specified as a `Node`, name or index.
    """
    edge = None
    if type(src) == tuple:
        src, dst = src

    if is_node_or_index(src):
        if not is_node_or_index(dst):
            raise ValueError("Destination node must be specified.")

        src = self.require_node(src)
        dst = self.require_node(dst)
        edge = Edge(src, dst)

    if type(src) == Edge:
        edge = src

    if edge not in self.edges:
        self.edges.append(edge)

add_edges(edges)

Add multiple Edges to the skeleton.

Parameters:

Name Type Description Default
edges list[Edge | tuple[NodeOrIndex, NodeOrIndex]]

A list of Edge objects or 2-tuples of source and destination nodes.

required
Source code in sleap_io/model/skeleton.py
def add_edges(self, edges: list[Edge | tuple[NodeOrIndex, NodeOrIndex]]):
    """Add multiple `Edge`s to the skeleton.

    Args:
        edges: A list of `Edge` objects or 2-tuples of source and destination nodes.
    """
    for edge in edges:
        self.add_edge(edge)

add_node(node)

Add a Node to the skeleton.

Parameters:

Name Type Description Default
node Node | str

A Node object or a string name to create a new node.

required

Raises:

Type Description
ValueError

If the node already exists in the skeleton or if the node is not specified as a Node or string.

Source code in sleap_io/model/skeleton.py
def add_node(self, node: Node | str):
    """Add a `Node` to the skeleton.

    Args:
        node: A `Node` object or a string name to create a new node.

    Raises:
        ValueError: If the node already exists in the skeleton or if the node is
            not specified as a `Node` or string.
    """
    if node in self:
        raise ValueError(f"Node '{node}' already exists in the skeleton.")

    if type(node) == str:
        node = Node(node)

    if type(node) != Node:
        raise ValueError(f"Invalid node type: {node} ({type(node)})")

    self.nodes.append(node)

    # Atomic update of the cache.
    self._name_to_node_cache[node.name] = node
    self._node_to_ind_cache[node] = len(self.nodes) - 1

add_nodes(nodes)

Add multiple Nodes to the skeleton.

Parameters:

Name Type Description Default
nodes list[Node | str]

A list of Node objects or string names to create new nodes.

required
Source code in sleap_io/model/skeleton.py
def add_nodes(self, nodes: list[Node | str]):
    """Add multiple `Node`s to the skeleton.

    Args:
        nodes: A list of `Node` objects or string names to create new nodes.
    """
    for node in nodes:
        self.add_node(node)

add_symmetry(node1=None, node2=None)

Add a symmetry relationship to the skeleton.

Parameters:

Name Type Description Default
node1 Symmetry | NodeOrIndex

The first node specified as a Node, name or index. If a Symmetry object is provided, it will be added directly to the skeleton.

None
node2 NodeOrIndex | None

The second node specified as a Node, name or index.

None
Source code in sleap_io/model/skeleton.py
def add_symmetry(
    self, node1: Symmetry | NodeOrIndex = None, node2: NodeOrIndex | None = None
):
    """Add a symmetry relationship to the skeleton.

    Args:
        node1: The first node specified as a `Node`, name or index. If a `Symmetry`
            object is provided, it will be added directly to the skeleton.
        node2: The second node specified as a `Node`, name or index.
    """
    symmetry = None
    if type(node1) == Symmetry:
        symmetry = node1
        node1, node2 = symmetry

    node1 = self.require_node(node1)
    node2 = self.require_node(node2)

    if symmetry is None:
        symmetry = Symmetry({node1, node2})

    if symmetry not in self.symmetries:
        self.symmetries.append(symmetry)

get_flipped_node_inds()

Returns node indices that should be switched when horizontally flipping.

This is useful as a lookup table for flipping the landmark coordinates when doing data augmentation.

Example

skel = Skeleton(["A", "B_left", "B_right", "C", "D_left", "D_right"]) skel.add_symmetry("B_left", "B_right") skel.add_symmetry("D_left", "D_right") skel.flipped_node_inds [0, 2, 1, 3, 5, 4] pose = np.array([[0, 0], [1, 1], [2, 2], [3, 3], [4, 4], [5, 5]]) pose[skel.flipped_node_inds] array([[0, 0], [2, 2], [1, 1], [3, 3], [5, 5], [4, 4]])

Source code in sleap_io/model/skeleton.py
def get_flipped_node_inds(self) -> list[int]:
    """Returns node indices that should be switched when horizontally flipping.

    This is useful as a lookup table for flipping the landmark coordinates when
    doing data augmentation.

    Example:
        >>> skel = Skeleton(["A", "B_left", "B_right", "C", "D_left", "D_right"])
        >>> skel.add_symmetry("B_left", "B_right")
        >>> skel.add_symmetry("D_left", "D_right")
        >>> skel.flipped_node_inds
        [0, 2, 1, 3, 5, 4]
        >>> pose = np.array([[0, 0], [1, 1], [2, 2], [3, 3], [4, 4], [5, 5]])
        >>> pose[skel.flipped_node_inds]
        array([[0, 0],
               [2, 2],
               [1, 1],
               [3, 3],
               [5, 5],
               [4, 4]])
    """
    flip_idx = np.arange(len(self.nodes))
    if len(self.symmetries) > 0:
        symmetry_inds = np.array(
            [(self.index(a), self.index(b)) for a, b in self.symmetries]
        )
        flip_idx[symmetry_inds[:, 0]] = symmetry_inds[:, 1]
        flip_idx[symmetry_inds[:, 1]] = symmetry_inds[:, 0]

    flip_idx = flip_idx.tolist()
    return flip_idx

index(node)

Return the index of a node specified as a Node or string name.

Source code in sleap_io/model/skeleton.py
def index(self, node: Node | str) -> int:
    """Return the index of a node specified as a `Node` or string name."""
    if type(node) == str:
        return self.index(self._name_to_node_cache[node])
    elif type(node) == Node:
        return self._node_to_ind_cache[node]
    else:
        raise IndexError(f"Invalid indexing argument for skeleton: {node}")

rebuild_cache(nodes=None)

Rebuild the node name/index to Node map caches.

Parameters:

Name Type Description Default
nodes list[Node] | None

A list of Node objects to update the cache with. If not provided, the cache will be updated with the current nodes in the skeleton. If nodes are provided, the cache will be updated with the provided nodes, but the current nodes in the skeleton will not be updated. Default is None.

None
Notes

This function should be called when nodes or node list is mutated to update the lookup caches for indexing nodes by name or Node object.

This is done automatically when nodes are added or removed from the skeleton using the convenience methods in this class.

This method only needs to be used when manually mutating nodes or the node list directly.

Source code in sleap_io/model/skeleton.py
def rebuild_cache(self, nodes: list[Node] | None = None):
    """Rebuild the node name/index to `Node` map caches.

    Args:
        nodes: A list of `Node` objects to update the cache with. If not provided,
            the cache will be updated with the current nodes in the skeleton. If
            nodes are provided, the cache will be updated with the provided nodes,
            but the current nodes in the skeleton will not be updated. Default is
            `None`.

    Notes:
        This function should be called when nodes or node list is mutated to update
        the lookup caches for indexing nodes by name or `Node` object.

        This is done automatically when nodes are added or removed from the skeleton
        using the convenience methods in this class.

        This method only needs to be used when manually mutating nodes or the node
        list directly.
    """
    if nodes is None:
        nodes = self.nodes
    self._name_to_node_cache = {node.name: node for node in nodes}
    self._node_to_ind_cache = {node: i for i, node in enumerate(nodes)}

remove_node(node)

Remove a single node from the skeleton.

Parameters:

Name Type Description Default
node NodeOrIndex

The node to remove. Can be specified as a string name, integer index, or Node object.

required
Notes

This method handles updating the lookup caches necessary for indexing nodes by name.

Any edges and symmetries that are connected to the removed node will also be removed.

Warning

This method does NOT update instances that use this skeleton to reflect changes.

It is recommended to use the Labels.remove_nodes() method which will update all contained instances to reflect the changes made to the skeleton.

To manually update instances after this method is called, call Instance.update_skeleton() on each instance that uses this skeleton.

Source code in sleap_io/model/skeleton.py
def remove_node(self, node: NodeOrIndex):
    """Remove a single node from the skeleton.

    Args:
        node: The node to remove. Can be specified as a string name, integer index,
            or `Node` object.

    Notes:
        This method handles updating the lookup caches necessary for indexing nodes
        by name.

        Any edges and symmetries that are connected to the removed node will also be
        removed.

    Warning:
        **This method does NOT update instances** that use this skeleton to reflect
        changes.

        It is recommended to use the `Labels.remove_nodes()` method which will
        update all contained instances to reflect the changes made to the skeleton.

        To manually update instances after this method is called, call
        `Instance.update_skeleton()` on each instance that uses this skeleton.
    """
    self.remove_nodes([node])

remove_nodes(nodes)

Remove nodes from the skeleton.

Parameters:

Name Type Description Default
nodes list[NodeOrIndex]

A list of node names, indices, or Node objects to remove.

required
Notes

This method handles updating the lookup caches necessary for indexing nodes by name.

Any edges and symmetries that are connected to the removed nodes will also be removed.

Warning

This method does NOT update instances that use this skeleton to reflect changes.

It is recommended to use the Labels.remove_nodes() method which will update all contained to reflect the changes made to the skeleton.

To manually update instances after this method is called, call instance.update_nodes() on each instance that uses this skeleton.

Source code in sleap_io/model/skeleton.py
def remove_nodes(self, nodes: list[NodeOrIndex]):
    """Remove nodes from the skeleton.

    Args:
        nodes: A list of node names, indices, or `Node` objects to remove.

    Notes:
        This method handles updating the lookup caches necessary for indexing nodes
        by name.

        Any edges and symmetries that are connected to the removed nodes will also
        be removed.

    Warning:
        **This method does NOT update instances** that use this skeleton to reflect
        changes.

        It is recommended to use the `Labels.remove_nodes()` method which will
        update all contained to reflect the changes made to the skeleton.

        To manually update instances after this method is called, call
        `instance.update_nodes()` on each instance that uses this skeleton.
    """
    # Standardize input and make a pre-mutation copy before keys are changed.
    rm_node_objs = [self.require_node(node, add_missing=False) for node in nodes]

    # Remove nodes from the skeleton.
    for node in rm_node_objs:
        self.nodes.remove(node)
        del self._name_to_node_cache[node.name]

    # Remove edges connected to the removed nodes.
    self.edges = [
        edge
        for edge in self.edges
        if edge.source not in rm_node_objs and edge.destination not in rm_node_objs
    ]

    # Remove symmetries connected to the removed nodes.
    self.symmetries = [
        symmetry
        for symmetry in self.symmetries
        if symmetry.nodes.isdisjoint(rm_node_objs)
    ]

    # Update node index map.
    self.rebuild_cache()

rename_node(old_name, new_name)

Rename a single node in the skeleton.

Parameters:

Name Type Description Default
old_name NodeOrIndex

The name of the node to rename. Can also be specified as an integer index or Node object.

required
new_name str

The new name for the node.

required
Source code in sleap_io/model/skeleton.py
def rename_node(self, old_name: NodeOrIndex, new_name: str):
    """Rename a single node in the skeleton.

    Args:
        old_name: The name of the node to rename. Can also be specified as an
            integer index or `Node` object.
        new_name: The new name for the node.
    """
    self.rename_nodes({old_name: new_name})

rename_nodes(name_map)

Rename nodes in the skeleton.

Parameters:

Name Type Description Default
name_map dict[NodeOrIndex, str] | list[str]

A dictionary mapping old node names to new node names. Keys can be specified as Node objects, integer indices, or string names. Values must be specified as string names.

If a list of strings is provided of the same length as the current nodes, the nodes will be renamed to the names in the list in order.

required

Raises:

Type Description
ValueError

If the new node names exist in the skeleton or if the old node names are not found in the skeleton.

Notes

This method should always be used when renaming nodes in the skeleton as it handles updating the lookup caches necessary for indexing nodes by name.

After renaming, instances using this skeleton do NOT need to be updated as the nodes are stored by reference in the skeleton, so changes are reflected automatically.

Example

skel = Skeleton(["A", "B", "C"], edges=[("A", "B"), ("B", "C")]) skel.rename_nodes({"A": "X", "B": "Y", "C": "Z"}) skel.node_names ["X", "Y", "Z"] skel.rename_nodes(["a", "b", "c"]) skel.node_names ["a", "b", "c"]

Source code in sleap_io/model/skeleton.py
def rename_nodes(self, name_map: dict[NodeOrIndex, str] | list[str]):
    """Rename nodes in the skeleton.

    Args:
        name_map: A dictionary mapping old node names to new node names. Keys can be
            specified as `Node` objects, integer indices, or string names. Values
            must be specified as string names.

            If a list of strings is provided of the same length as the current
            nodes, the nodes will be renamed to the names in the list in order.

    Raises:
        ValueError: If the new node names exist in the skeleton or if the old node
            names are not found in the skeleton.

    Notes:
        This method should always be used when renaming nodes in the skeleton as it
        handles updating the lookup caches necessary for indexing nodes by name.

        After renaming, instances using this skeleton **do NOT need to be updated**
        as the nodes are stored by reference in the skeleton, so changes are
        reflected automatically.

    Example:
        >>> skel = Skeleton(["A", "B", "C"], edges=[("A", "B"), ("B", "C")])
        >>> skel.rename_nodes({"A": "X", "B": "Y", "C": "Z"})
        >>> skel.node_names
        ["X", "Y", "Z"]
        >>> skel.rename_nodes(["a", "b", "c"])
        >>> skel.node_names
        ["a", "b", "c"]
    """
    if type(name_map) == list:
        if len(name_map) != len(self.nodes):
            raise ValueError(
                "List of new node names must be the same length as the current "
                "nodes."
            )
        name_map = {node: name for node, name in zip(self.nodes, name_map)}

    for old_name, new_name in name_map.items():
        if type(old_name) == Node:
            old_name = old_name.name
        if type(old_name) == int:
            old_name = self.nodes[old_name].name

        if old_name not in self._name_to_node_cache:
            raise ValueError(f"Node '{old_name}' not found in the skeleton.")
        if new_name in self._name_to_node_cache:
            raise ValueError(f"Node '{new_name}' already exists in the skeleton.")

        node = self._name_to_node_cache[old_name]
        node.name = new_name
        self._name_to_node_cache[new_name] = node
        del self._name_to_node_cache[old_name]

reorder_nodes(new_order)

Reorder nodes in the skeleton.

Parameters:

Name Type Description Default
new_order list[NodeOrIndex]

A list of node names, indices, or Node objects specifying the new order of the nodes.

required

Raises:

Type Description
ValueError

If the new order of nodes is not the same length as the current nodes.

Notes

This method handles updating the lookup caches necessary for indexing nodes by name.

Warning

After reordering, instances using this skeleton do not need to be updated as the nodes are stored by reference in the skeleton.

However, the order that points are stored in the instances will not be updated to match the new order of the nodes in the skeleton. This should not matter unless the ordering of the keys in the Instance.points dictionary is used instead of relying on the skeleton node order.

To make sure these are aligned, it is recommended to use the Labels.reorder_nodes() method which will update all contained instances to reflect the changes made to the skeleton.

To manually update instances after this method is called, call Instance.update_skeleton() on each instance that uses this skeleton.

Source code in sleap_io/model/skeleton.py
def reorder_nodes(self, new_order: list[NodeOrIndex]):
    """Reorder nodes in the skeleton.

    Args:
        new_order: A list of node names, indices, or `Node` objects specifying the
            new order of the nodes.

    Raises:
        ValueError: If the new order of nodes is not the same length as the current
            nodes.

    Notes:
        This method handles updating the lookup caches necessary for indexing nodes
        by name.

    Warning:
        After reordering, instances using this skeleton do not need to be updated as
        the nodes are stored by reference in the skeleton.

        However, the order that points are stored in the instances will not be
        updated to match the new order of the nodes in the skeleton. This should not
        matter unless the ordering of the keys in the `Instance.points` dictionary
        is used instead of relying on the skeleton node order.

        To make sure these are aligned, it is recommended to use the
        `Labels.reorder_nodes()` method which will update all contained instances to
        reflect the changes made to the skeleton.

        To manually update instances after this method is called, call
        `Instance.update_skeleton()` on each instance that uses this skeleton.
    """
    if len(new_order) != len(self.nodes):
        raise ValueError(
            "New order of nodes must be the same length as the current nodes."
        )

    new_nodes = [self.require_node(node, add_missing=False) for node in new_order]
    self.nodes = new_nodes

require_node(node, add_missing=True)

Return a Node object, handling indexing and adding missing nodes.

Parameters:

Name Type Description Default
node NodeOrIndex

A Node object, name or index.

required
add_missing bool

If True, missing nodes will be added to the skeleton. If False, an error will be raised if the node is not found. Default is True.

True

Returns:

Type Description
Node

The Node object.

Raises:

Type Description
IndexError

If the node is not found in the skeleton and add_missing is False.

Source code in sleap_io/model/skeleton.py
def require_node(self, node: NodeOrIndex, add_missing: bool = True) -> Node:
    """Return a `Node` object, handling indexing and adding missing nodes.

    Args:
        node: A `Node` object, name or index.
        add_missing: If `True`, missing nodes will be added to the skeleton. If
            `False`, an error will be raised if the node is not found. Default is
            `True`.

    Returns:
        The `Node` object.

    Raises:
        IndexError: If the node is not found in the skeleton and `add_missing` is
            `False`.
    """
    if node not in self:
        if add_missing:
            self.add_node(node)
        else:
            raise IndexError(f"Node '{node}' not found in the skeleton.")

    if type(node) == Node:
        return node

    return self[node]

sleap_io.Node

A landmark type within a Skeleton.

This typically corresponds to a unique landmark within a skeleton, such as the "left eye".

Attributes:

Name Type Description
name str

Descriptive label for the landmark.

Source code in sleap_io/model/skeleton.py
@define(eq=False)
class Node:
    """A landmark type within a `Skeleton`.

    This typically corresponds to a unique landmark within a skeleton, such as the "left
    eye".

    Attributes:
        name: Descriptive label for the landmark.
    """

    name: str

sleap_io.Edge

A connection between two Node objects within a Skeleton.

This is a directed edge, representing the ordering of Nodes in the Skeleton tree.

Attributes:

Name Type Description
source Node

The origin Node.

destination Node

The destination Node.

Methods:

Name Description
__getitem__

Return the source Node (idx is 0) or destination Node (idx is 1).

Source code in sleap_io/model/skeleton.py
@define(frozen=True)
class Edge:
    """A connection between two `Node` objects within a `Skeleton`.

    This is a directed edge, representing the ordering of `Node`s in the `Skeleton`
    tree.

    Attributes:
        source: The origin `Node`.
        destination: The destination `Node`.
    """

    source: Node
    destination: Node

    def __getitem__(self, idx) -> Node:
        """Return the source `Node` (`idx` is 0) or destination `Node` (`idx` is 1)."""
        if idx == 0:
            return self.source
        elif idx == 1:
            return self.destination
        else:
            raise IndexError("Edge only has 2 nodes (source and destination).")

__getitem__(idx)

Return the source Node (idx is 0) or destination Node (idx is 1).

Source code in sleap_io/model/skeleton.py
def __getitem__(self, idx) -> Node:
    """Return the source `Node` (`idx` is 0) or destination `Node` (`idx` is 1)."""
    if idx == 0:
        return self.source
    elif idx == 1:
        return self.destination
    else:
        raise IndexError("Edge only has 2 nodes (source and destination).")

sleap_io.Symmetry

A relationship between a pair of nodes denoting their left/right pairing.

Attributes:

Name Type Description
nodes set[Node]

A set of two Nodes.

Methods:

Name Description
__getitem__

Return the first node.

__iter__

Iterate over the symmetric nodes.

Source code in sleap_io/model/skeleton.py
@define
class Symmetry:
    """A relationship between a pair of nodes denoting their left/right pairing.

    Attributes:
        nodes: A set of two `Node`s.
    """

    nodes: set[Node] = field(converter=set, validator=lambda _, __, val: len(val) == 2)

    def __iter__(self):
        """Iterate over the symmetric nodes."""
        return iter(self.nodes)

    def __getitem__(self, idx) -> Node:
        """Return the first node."""
        for i, node in enumerate(self.nodes):
            if i == idx:
                return node

__getitem__(idx)

Return the first node.

Source code in sleap_io/model/skeleton.py
def __getitem__(self, idx) -> Node:
    """Return the first node."""
    for i, node in enumerate(self.nodes):
        if i == idx:
            return node

__iter__()

Iterate over the symmetric nodes.

Source code in sleap_io/model/skeleton.py
def __iter__(self):
    """Iterate over the symmetric nodes."""
    return iter(self.nodes)

sleap_io.Track

An object that represents the same animal/object across multiple detections.

This allows tracking of unique entities in the video over time and space.

A Track may also be used to refer to unique identity classes that span multiple videos, such as "female mouse".

Attributes:

Name Type Description
name str

A name given to this track for identification purposes.

Notes

Tracks are compared by identity. This means that unique track objects with the same name are considered to be different.

Source code in sleap_io/model/instance.py
@define(eq=False)
class Track:
    """An object that represents the same animal/object across multiple detections.

    This allows tracking of unique entities in the video over time and space.

    A `Track` may also be used to refer to unique identity classes that span multiple
    videos, such as `"female mouse"`.

    Attributes:
        name: A name given to this track for identification purposes.

    Notes:
        `Track`s are compared by identity. This means that unique track objects with the
        same name are considered to be different.
    """

    name: str = ""

sleap_io.Video

Video class used by sleap to represent videos and data associated with them.

This class is used to store information regarding a video and its components. It is used to store the video's filename, shape, and the video's backend.

To create a Video object, use the from_filename method which will select the backend appropriately.

Attributes:

Name Type Description
filename str | list[str]

The filename(s) of the video. Supported extensions: "mp4", "avi", "mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif", "tiff", "bmp". If the filename is a list, a list of image filenames are expected. If filename is a folder, it will be searched for images.

backend Optional[VideoBackend]

An object that implements the basic methods for reading and manipulating frames of a specific video type.

backend_metadata dict[str, any]

A dictionary of metadata specific to the backend. This is useful for storing metadata that requires an open backend (e.g., shape information) without having access to the video file itself.

source_video Optional[Video]

The source video object if this is a proxy video. This is present when the video contains an embedded subset of frames from another video.

open_backend bool

Whether to open the backend when the video is available. If True (the default), the backend will be automatically opened if the video exists. Set this to False when you want to manually open the backend, or when the you know the video file does not exist and you want to avoid trying to open the file.

Notes

Instances of this class are hashed by identity, not by value. This means that two Video instances with the same attributes will NOT be considered equal in a set or dict.

See also: VideoBackend

Methods:

Name Description
__attrs_post_init__

Post init syntactic sugar.

__deepcopy__

Deep copy the video object.

__getitem__

Return the frames of the video at the given indices.

__len__

Return the length of the video as the number of frames.

__repr__

Informal string representation (for print or format).

__str__

Informal string representation (for print or format).

close

Close the video backend.

exists

Check if the video file exists and is accessible.

from_filename

Create a Video from a filename.

open

Open the video backend for reading.

replace_filename

Update the filename of the video, optionally opening the backend.

save

Save video frames to a new video file.

Attributes:

Name Type Description
grayscale bool | None

Return whether the video is grayscale.

is_open bool

Check if the video backend is open.

shape Tuple[int, int, int, int] | None

Return the shape of the video as (num_frames, height, width, channels).

Source code in sleap_io/model/video.py
@attrs.define(eq=False)
class Video:
    """`Video` class used by sleap to represent videos and data associated with them.

    This class is used to store information regarding a video and its components.
    It is used to store the video's `filename`, `shape`, and the video's `backend`.

    To create a `Video` object, use the `from_filename` method which will select the
    backend appropriately.

    Attributes:
        filename: The filename(s) of the video. Supported extensions: "mp4", "avi",
            "mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif",
            "tiff", "bmp". If the filename is a list, a list of image filenames are
            expected. If filename is a folder, it will be searched for images.
        backend: An object that implements the basic methods for reading and
            manipulating frames of a specific video type.
        backend_metadata: A dictionary of metadata specific to the backend. This is
            useful for storing metadata that requires an open backend (e.g., shape
            information) without having access to the video file itself.
        source_video: The source video object if this is a proxy video. This is present
            when the video contains an embedded subset of frames from another video.
        open_backend: Whether to open the backend when the video is available. If `True`
            (the default), the backend will be automatically opened if the video exists.
            Set this to `False` when you want to manually open the backend, or when the
            you know the video file does not exist and you want to avoid trying to open
            the file.

    Notes:
        Instances of this class are hashed by identity, not by value. This means that
        two `Video` instances with the same attributes will NOT be considered equal in a
        set or dict.

    See also: VideoBackend
    """

    filename: str | list[str]
    backend: Optional[VideoBackend] = None
    backend_metadata: dict[str, any] = attrs.field(factory=dict)
    source_video: Optional[Video] = None
    open_backend: bool = True

    EXTS = MediaVideo.EXTS + HDF5Video.EXTS + ImageVideo.EXTS

    def __attrs_post_init__(self):
        """Post init syntactic sugar."""
        if self.open_backend and self.backend is None and self.exists():
            try:
                self.open()
            except Exception as e:
                # If we can't open the backend, just ignore it for now so we don't
                # prevent the user from building the Video object entirely.
                pass

    def __deepcopy__(self, memo):
        """Deep copy the video object."""
        if id(self) in memo:
            return memo[id(self)]

        reopen = False
        if self.is_open:
            reopen = True
            self.close()

        new_video = Video(
            filename=self.filename,
            backend=None,
            backend_metadata=self.backend_metadata,
            source_video=self.source_video,
            open_backend=self.open_backend,
        )

        memo[id(self)] = new_video

        if reopen:
            self.open()

        return new_video

    @classmethod
    def from_filename(
        cls,
        filename: str | list[str],
        dataset: Optional[str] = None,
        grayscale: Optional[bool] = None,
        keep_open: bool = True,
        source_video: Optional[Video] = None,
        **kwargs,
    ) -> VideoBackend:
        """Create a Video from a filename.

        Args:
            filename: The filename(s) of the video. Supported extensions: "mp4", "avi",
                "mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif",
                "tiff", "bmp". If the filename is a list, a list of image filenames are
                expected. If filename is a folder, it will be searched for images.
            dataset: Name of dataset in HDF5 file.
            grayscale: Whether to force grayscale. If None, autodetect on first frame
                load.
            keep_open: Whether to keep the video reader open between calls to read
                frames. If False, will close the reader after each call. If True (the
                default), it will keep the reader open and cache it for subsequent calls
                which may enhance the performance of reading multiple frames.
            source_video: The source video object if this is a proxy video. This is
                present when the video contains an embedded subset of frames from
                another video.

        Returns:
            Video instance with the appropriate backend instantiated.
        """
        return cls(
            filename=filename,
            backend=VideoBackend.from_filename(
                filename,
                dataset=dataset,
                grayscale=grayscale,
                keep_open=keep_open,
                **kwargs,
            ),
            source_video=source_video,
        )

    @property
    def shape(self) -> Tuple[int, int, int, int] | None:
        """Return the shape of the video as (num_frames, height, width, channels).

        If the video backend is not set or it cannot determine the shape of the video,
        this will return None.
        """
        return self._get_shape()

    def _get_shape(self) -> Tuple[int, int, int, int] | None:
        """Return the shape of the video as (num_frames, height, width, channels).

        This suppresses errors related to querying the backend for the video shape, such
        as when it has not been set or when the video file is not found.
        """
        try:
            return self.backend.shape
        except:
            if "shape" in self.backend_metadata:
                return self.backend_metadata["shape"]
            return None

    @property
    def grayscale(self) -> bool | None:
        """Return whether the video is grayscale.

        If the video backend is not set or it cannot determine whether the video is
        grayscale, this will return None.
        """
        shape = self.shape
        if shape is not None:
            return shape[-1] == 1
        else:
            grayscale = None
            if "grayscale" in self.backend_metadata:
                grayscale = self.backend_metadata["grayscale"]
            return grayscale

    @grayscale.setter
    def grayscale(self, value: bool):
        """Set the grayscale value and adjust the backend."""
        if self.backend is not None:
            self.backend.grayscale = value
            self.backend._cached_shape = None

        self.backend_metadata["grayscale"] = value

    def __len__(self) -> int:
        """Return the length of the video as the number of frames."""
        shape = self.shape
        return 0 if shape is None else shape[0]

    def __repr__(self) -> str:
        """Informal string representation (for print or format)."""
        dataset = (
            f"dataset={self.backend.dataset}, "
            if getattr(self.backend, "dataset", "")
            else ""
        )
        return (
            "Video("
            f'filename="{self.filename}", '
            f"shape={self.shape}, "
            f"{dataset}"
            f"backend={type(self.backend).__name__}"
            ")"
        )

    def __str__(self) -> str:
        """Informal string representation (for print or format)."""
        return self.__repr__()

    def __getitem__(self, inds: int | list[int] | slice) -> np.ndarray:
        """Return the frames of the video at the given indices.

        Args:
            inds: Index or list of indices of frames to read.

        Returns:
            Frame or frames as a numpy array of shape `(height, width, channels)` if a
            scalar index is provided, or `(frames, height, width, channels)` if a list
            of indices is provided.

        See also: VideoBackend.get_frame, VideoBackend.get_frames
        """
        if not self.is_open:
            if self.open_backend:
                self.open()
            else:
                raise ValueError(
                    "Video backend is not open. Call video.open() or set "
                    "video.open_backend to True to do automatically on frame read."
                )
        return self.backend[inds]

    def exists(self, check_all: bool = False, dataset: str | None = None) -> bool:
        """Check if the video file exists and is accessible.

        Args:
            check_all: If `True`, check that all filenames in a list exist. If `False`
                (the default), check that the first filename exists.
            dataset: Name of dataset in HDF5 file. If specified, this will function will
                return `False` if the dataset does not exist.

        Returns:
            `True` if the file exists and is accessible, `False` otherwise.
        """
        if isinstance(self.filename, list):
            if check_all:
                for f in self.filename:
                    if not is_file_accessible(f):
                        return False
                return True
            else:
                return is_file_accessible(self.filename[0])

        file_is_accessible = is_file_accessible(self.filename)
        if not file_is_accessible:
            return False

        if dataset is None or dataset == "":
            dataset = self.backend_metadata.get("dataset", None)

        if dataset is not None and dataset != "":
            has_dataset = False
            if (
                self.backend is not None
                and type(self.backend) == HDF5Video
                and self.backend._open_reader is not None
            ):
                has_dataset = dataset in self.backend._open_reader
            else:
                with h5py.File(self.filename, "r") as f:
                    has_dataset = dataset in f
            return has_dataset

        return True

    @property
    def is_open(self) -> bool:
        """Check if the video backend is open."""
        return self.exists() and self.backend is not None

    def open(
        self,
        filename: Optional[str] = None,
        dataset: Optional[str] = None,
        grayscale: Optional[str] = None,
        keep_open: bool = True,
    ):
        """Open the video backend for reading.

        Args:
            filename: Filename to open. If not specified, will use the filename set on
                the video object.
            dataset: Name of dataset in HDF5 file.
            grayscale: Whether to force grayscale. If None, autodetect on first frame
                load.
            keep_open: Whether to keep the video reader open between calls to read
                frames. If False, will close the reader after each call. If True (the
                default), it will keep the reader open and cache it for subsequent calls
                which may enhance the performance of reading multiple frames.

        Notes:
            This is useful for opening the video backend to read frames and then closing
            it after reading all the necessary frames.

            If the backend was already open, it will be closed before opening a new one.
            Values for the HDF5 dataset and grayscale will be remembered if not
            specified.
        """
        if filename is not None:
            self.replace_filename(filename, open=False)

        # Try to remember values from previous backend if available and not specified.
        if self.backend is not None:
            if dataset is None:
                dataset = getattr(self.backend, "dataset", None)
            if grayscale is None:
                grayscale = getattr(self.backend, "grayscale", None)

        else:
            if dataset is None and "dataset" in self.backend_metadata:
                dataset = self.backend_metadata["dataset"]
            if grayscale is None:
                if "grayscale" in self.backend_metadata:
                    grayscale = self.backend_metadata["grayscale"]
                elif "shape" in self.backend_metadata:
                    grayscale = self.backend_metadata["shape"][-1] == 1

        if not self.exists(dataset=dataset):
            msg = f"Video does not exist or is inaccessible: {self.filename}"
            if dataset is not None:
                msg += f" (dataset: {dataset})"
            raise FileNotFoundError(msg)

        # Close previous backend if open.
        self.close()

        # Create new backend.
        self.backend = VideoBackend.from_filename(
            self.filename,
            dataset=dataset,
            grayscale=grayscale,
            keep_open=keep_open,
        )

    def close(self):
        """Close the video backend."""
        if self.backend is not None:
            # Try to remember values from previous backend if available and not
            # specified.
            try:
                self.backend_metadata["dataset"] = getattr(
                    self.backend, "dataset", None
                )
                self.backend_metadata["grayscale"] = getattr(
                    self.backend, "grayscale", None
                )
                self.backend_metadata["shape"] = getattr(self.backend, "shape", None)
            except:
                pass

            del self.backend
            self.backend = None

    def replace_filename(
        self, new_filename: str | Path | list[str] | list[Path], open: bool = True
    ):
        """Update the filename of the video, optionally opening the backend.

        Args:
            new_filename: New filename to set for the video.
            open: If `True` (the default), open the backend with the new filename. If
                the new filename does not exist, no error is raised.
        """
        if isinstance(new_filename, Path):
            new_filename = new_filename.as_posix()

        if isinstance(new_filename, list):
            new_filename = [
                p.as_posix() if isinstance(p, Path) else p for p in new_filename
            ]

        self.filename = new_filename
        self.backend_metadata["filename"] = new_filename

        if open:
            if self.exists():
                self.open()
            else:
                self.close()

    def save(
        self,
        save_path: str | Path,
        frame_inds: list[int] | np.ndarray | None = None,
        video_kwargs: dict[str, Any] | None = None,
    ) -> Video:
        """Save video frames to a new video file.

        Args:
            save_path: Path to the new video file. Should end in MP4.
            frame_inds: Frame indices to save. Can be specified as a list or array of
                frame integers. If not specified, saves all video frames.
            video_kwargs: A dictionary of keyword arguments to provide to
                `sio.save_video` for video compression.

        Returns:
            A new `Video` object pointing to the new video file.
        """
        video_kwargs = {} if video_kwargs is None else video_kwargs
        frame_inds = np.arange(len(self)) if frame_inds is None else frame_inds

        with VideoWriter(save_path, **video_kwargs) as vw:
            for frame_ind in frame_inds:
                vw(self[frame_ind])

        new_video = Video.from_filename(save_path, grayscale=self.grayscale)
        return new_video

grayscale: bool | None property writable

Return whether the video is grayscale.

If the video backend is not set or it cannot determine whether the video is grayscale, this will return None.

is_open: bool property

Check if the video backend is open.

shape: Tuple[int, int, int, int] | None property

Return the shape of the video as (num_frames, height, width, channels).

If the video backend is not set or it cannot determine the shape of the video, this will return None.

__attrs_post_init__()

Post init syntactic sugar.

Source code in sleap_io/model/video.py
def __attrs_post_init__(self):
    """Post init syntactic sugar."""
    if self.open_backend and self.backend is None and self.exists():
        try:
            self.open()
        except Exception as e:
            # If we can't open the backend, just ignore it for now so we don't
            # prevent the user from building the Video object entirely.
            pass

__deepcopy__(memo)

Deep copy the video object.

Source code in sleap_io/model/video.py
def __deepcopy__(self, memo):
    """Deep copy the video object."""
    if id(self) in memo:
        return memo[id(self)]

    reopen = False
    if self.is_open:
        reopen = True
        self.close()

    new_video = Video(
        filename=self.filename,
        backend=None,
        backend_metadata=self.backend_metadata,
        source_video=self.source_video,
        open_backend=self.open_backend,
    )

    memo[id(self)] = new_video

    if reopen:
        self.open()

    return new_video

__getitem__(inds)

Return the frames of the video at the given indices.

Parameters:

Name Type Description Default
inds int | list[int] | slice

Index or list of indices of frames to read.

required

Returns:

Type Description
ndarray

Frame or frames as a numpy array of shape (height, width, channels) if a scalar index is provided, or (frames, height, width, channels) if a list of indices is provided.

See also: VideoBackend.get_frame, VideoBackend.get_frames

Source code in sleap_io/model/video.py
def __getitem__(self, inds: int | list[int] | slice) -> np.ndarray:
    """Return the frames of the video at the given indices.

    Args:
        inds: Index or list of indices of frames to read.

    Returns:
        Frame or frames as a numpy array of shape `(height, width, channels)` if a
        scalar index is provided, or `(frames, height, width, channels)` if a list
        of indices is provided.

    See also: VideoBackend.get_frame, VideoBackend.get_frames
    """
    if not self.is_open:
        if self.open_backend:
            self.open()
        else:
            raise ValueError(
                "Video backend is not open. Call video.open() or set "
                "video.open_backend to True to do automatically on frame read."
            )
    return self.backend[inds]

__len__()

Return the length of the video as the number of frames.

Source code in sleap_io/model/video.py
def __len__(self) -> int:
    """Return the length of the video as the number of frames."""
    shape = self.shape
    return 0 if shape is None else shape[0]

__repr__()

Informal string representation (for print or format).

Source code in sleap_io/model/video.py
def __repr__(self) -> str:
    """Informal string representation (for print or format)."""
    dataset = (
        f"dataset={self.backend.dataset}, "
        if getattr(self.backend, "dataset", "")
        else ""
    )
    return (
        "Video("
        f'filename="{self.filename}", '
        f"shape={self.shape}, "
        f"{dataset}"
        f"backend={type(self.backend).__name__}"
        ")"
    )

__str__()

Informal string representation (for print or format).

Source code in sleap_io/model/video.py
def __str__(self) -> str:
    """Informal string representation (for print or format)."""
    return self.__repr__()

close()

Close the video backend.

Source code in sleap_io/model/video.py
def close(self):
    """Close the video backend."""
    if self.backend is not None:
        # Try to remember values from previous backend if available and not
        # specified.
        try:
            self.backend_metadata["dataset"] = getattr(
                self.backend, "dataset", None
            )
            self.backend_metadata["grayscale"] = getattr(
                self.backend, "grayscale", None
            )
            self.backend_metadata["shape"] = getattr(self.backend, "shape", None)
        except:
            pass

        del self.backend
        self.backend = None

exists(check_all=False, dataset=None)

Check if the video file exists and is accessible.

Parameters:

Name Type Description Default
check_all bool

If True, check that all filenames in a list exist. If False (the default), check that the first filename exists.

False
dataset str | None

Name of dataset in HDF5 file. If specified, this will function will return False if the dataset does not exist.

None

Returns:

Type Description
bool

True if the file exists and is accessible, False otherwise.

Source code in sleap_io/model/video.py
def exists(self, check_all: bool = False, dataset: str | None = None) -> bool:
    """Check if the video file exists and is accessible.

    Args:
        check_all: If `True`, check that all filenames in a list exist. If `False`
            (the default), check that the first filename exists.
        dataset: Name of dataset in HDF5 file. If specified, this will function will
            return `False` if the dataset does not exist.

    Returns:
        `True` if the file exists and is accessible, `False` otherwise.
    """
    if isinstance(self.filename, list):
        if check_all:
            for f in self.filename:
                if not is_file_accessible(f):
                    return False
            return True
        else:
            return is_file_accessible(self.filename[0])

    file_is_accessible = is_file_accessible(self.filename)
    if not file_is_accessible:
        return False

    if dataset is None or dataset == "":
        dataset = self.backend_metadata.get("dataset", None)

    if dataset is not None and dataset != "":
        has_dataset = False
        if (
            self.backend is not None
            and type(self.backend) == HDF5Video
            and self.backend._open_reader is not None
        ):
            has_dataset = dataset in self.backend._open_reader
        else:
            with h5py.File(self.filename, "r") as f:
                has_dataset = dataset in f
        return has_dataset

    return True

from_filename(filename, dataset=None, grayscale=None, keep_open=True, source_video=None, **kwargs) classmethod

Create a Video from a filename.

Parameters:

Name Type Description Default
filename str | list[str]

The filename(s) of the video. Supported extensions: "mp4", "avi", "mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif", "tiff", "bmp". If the filename is a list, a list of image filenames are expected. If filename is a folder, it will be searched for images.

required
dataset Optional[str]

Name of dataset in HDF5 file.

None
grayscale Optional[bool]

Whether to force grayscale. If None, autodetect on first frame load.

None
keep_open bool

Whether to keep the video reader open between calls to read frames. If False, will close the reader after each call. If True (the default), it will keep the reader open and cache it for subsequent calls which may enhance the performance of reading multiple frames.

True
source_video Optional[Video]

The source video object if this is a proxy video. This is present when the video contains an embedded subset of frames from another video.

None

Returns:

Type Description
VideoBackend

Video instance with the appropriate backend instantiated.

Source code in sleap_io/model/video.py
@classmethod
def from_filename(
    cls,
    filename: str | list[str],
    dataset: Optional[str] = None,
    grayscale: Optional[bool] = None,
    keep_open: bool = True,
    source_video: Optional[Video] = None,
    **kwargs,
) -> VideoBackend:
    """Create a Video from a filename.

    Args:
        filename: The filename(s) of the video. Supported extensions: "mp4", "avi",
            "mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif",
            "tiff", "bmp". If the filename is a list, a list of image filenames are
            expected. If filename is a folder, it will be searched for images.
        dataset: Name of dataset in HDF5 file.
        grayscale: Whether to force grayscale. If None, autodetect on first frame
            load.
        keep_open: Whether to keep the video reader open between calls to read
            frames. If False, will close the reader after each call. If True (the
            default), it will keep the reader open and cache it for subsequent calls
            which may enhance the performance of reading multiple frames.
        source_video: The source video object if this is a proxy video. This is
            present when the video contains an embedded subset of frames from
            another video.

    Returns:
        Video instance with the appropriate backend instantiated.
    """
    return cls(
        filename=filename,
        backend=VideoBackend.from_filename(
            filename,
            dataset=dataset,
            grayscale=grayscale,
            keep_open=keep_open,
            **kwargs,
        ),
        source_video=source_video,
    )

open(filename=None, dataset=None, grayscale=None, keep_open=True)

Open the video backend for reading.

Parameters:

Name Type Description Default
filename Optional[str]

Filename to open. If not specified, will use the filename set on the video object.

None
dataset Optional[str]

Name of dataset in HDF5 file.

None
grayscale Optional[str]

Whether to force grayscale. If None, autodetect on first frame load.

None
keep_open bool

Whether to keep the video reader open between calls to read frames. If False, will close the reader after each call. If True (the default), it will keep the reader open and cache it for subsequent calls which may enhance the performance of reading multiple frames.

True
Notes

This is useful for opening the video backend to read frames and then closing it after reading all the necessary frames.

If the backend was already open, it will be closed before opening a new one. Values for the HDF5 dataset and grayscale will be remembered if not specified.

Source code in sleap_io/model/video.py
def open(
    self,
    filename: Optional[str] = None,
    dataset: Optional[str] = None,
    grayscale: Optional[str] = None,
    keep_open: bool = True,
):
    """Open the video backend for reading.

    Args:
        filename: Filename to open. If not specified, will use the filename set on
            the video object.
        dataset: Name of dataset in HDF5 file.
        grayscale: Whether to force grayscale. If None, autodetect on first frame
            load.
        keep_open: Whether to keep the video reader open between calls to read
            frames. If False, will close the reader after each call. If True (the
            default), it will keep the reader open and cache it for subsequent calls
            which may enhance the performance of reading multiple frames.

    Notes:
        This is useful for opening the video backend to read frames and then closing
        it after reading all the necessary frames.

        If the backend was already open, it will be closed before opening a new one.
        Values for the HDF5 dataset and grayscale will be remembered if not
        specified.
    """
    if filename is not None:
        self.replace_filename(filename, open=False)

    # Try to remember values from previous backend if available and not specified.
    if self.backend is not None:
        if dataset is None:
            dataset = getattr(self.backend, "dataset", None)
        if grayscale is None:
            grayscale = getattr(self.backend, "grayscale", None)

    else:
        if dataset is None and "dataset" in self.backend_metadata:
            dataset = self.backend_metadata["dataset"]
        if grayscale is None:
            if "grayscale" in self.backend_metadata:
                grayscale = self.backend_metadata["grayscale"]
            elif "shape" in self.backend_metadata:
                grayscale = self.backend_metadata["shape"][-1] == 1

    if not self.exists(dataset=dataset):
        msg = f"Video does not exist or is inaccessible: {self.filename}"
        if dataset is not None:
            msg += f" (dataset: {dataset})"
        raise FileNotFoundError(msg)

    # Close previous backend if open.
    self.close()

    # Create new backend.
    self.backend = VideoBackend.from_filename(
        self.filename,
        dataset=dataset,
        grayscale=grayscale,
        keep_open=keep_open,
    )

replace_filename(new_filename, open=True)

Update the filename of the video, optionally opening the backend.

Parameters:

Name Type Description Default
new_filename str | Path | list[str] | list[Path]

New filename to set for the video.

required
open bool

If True (the default), open the backend with the new filename. If the new filename does not exist, no error is raised.

True
Source code in sleap_io/model/video.py
def replace_filename(
    self, new_filename: str | Path | list[str] | list[Path], open: bool = True
):
    """Update the filename of the video, optionally opening the backend.

    Args:
        new_filename: New filename to set for the video.
        open: If `True` (the default), open the backend with the new filename. If
            the new filename does not exist, no error is raised.
    """
    if isinstance(new_filename, Path):
        new_filename = new_filename.as_posix()

    if isinstance(new_filename, list):
        new_filename = [
            p.as_posix() if isinstance(p, Path) else p for p in new_filename
        ]

    self.filename = new_filename
    self.backend_metadata["filename"] = new_filename

    if open:
        if self.exists():
            self.open()
        else:
            self.close()

save(save_path, frame_inds=None, video_kwargs=None)

Save video frames to a new video file.

Parameters:

Name Type Description Default
save_path str | Path

Path to the new video file. Should end in MP4.

required
frame_inds list[int] | ndarray | None

Frame indices to save. Can be specified as a list or array of frame integers. If not specified, saves all video frames.

None
video_kwargs dict[str, Any] | None

A dictionary of keyword arguments to provide to sio.save_video for video compression.

None

Returns:

Type Description
Video

A new Video object pointing to the new video file.

Source code in sleap_io/model/video.py
def save(
    self,
    save_path: str | Path,
    frame_inds: list[int] | np.ndarray | None = None,
    video_kwargs: dict[str, Any] | None = None,
) -> Video:
    """Save video frames to a new video file.

    Args:
        save_path: Path to the new video file. Should end in MP4.
        frame_inds: Frame indices to save. Can be specified as a list or array of
            frame integers. If not specified, saves all video frames.
        video_kwargs: A dictionary of keyword arguments to provide to
            `sio.save_video` for video compression.

    Returns:
        A new `Video` object pointing to the new video file.
    """
    video_kwargs = {} if video_kwargs is None else video_kwargs
    frame_inds = np.arange(len(self)) if frame_inds is None else frame_inds

    with VideoWriter(save_path, **video_kwargs) as vw:
        for frame_ind in frame_inds:
            vw(self[frame_ind])

    new_video = Video.from_filename(save_path, grayscale=self.grayscale)
    return new_video

sleap_io.SuggestionFrame

Data structure for a single frame of suggestions.

Attributes:

Name Type Description
video Video

The video associated with the frame.

frame_idx int

The index of the frame in the video.

Source code in sleap_io/model/suggestions.py
@attrs.define(auto_attribs=True)
class SuggestionFrame:
    """Data structure for a single frame of suggestions.

    Attributes:
        video: The video associated with the frame.
        frame_idx: The index of the frame in the video.
    """

    video: Video
    frame_idx: int