Skip to content

camera

sleap_io.model.camera

Data structure for a single camera view in a multi-camera setup.

Classes:

Name Description
Camera

A camera used to record in a multi-view RecordingSession.

CameraGroup

A group of cameras used to record a multi-view RecordingSession.

FrameGroup

Defines a group of InstanceGroups across views at the same frame index.

InstanceGroup

Defines a group of instances across the same frame index.

RecordingSession

A recording session with multiple cameras.

Functions:

Name Description
rodrigues_transformation

Convert between rotation vector and rotation matrix using Rodrigues' formula.

Camera

A camera used to record in a multi-view RecordingSession.

Attributes:

Name Type Description
matrix ndarray

Intrinsic camera matrix of size (3, 3) and type float64.

dist ndarray

Radial-tangential distortion coefficients [k_1, k_2, p_1, p_2, k_3] of size (5,) and type float64.

size tuple[int, int]

Image size (width, height) of camera in pixels of size (2,) and type int.

rvec ndarray

Rotation vector in unnormalized axis-angle representation of size (3,) and type float64.

tvec ndarray

Translation vector of size (3,) and type float64.

extrinsic_matrix ndarray

Extrinsic matrix of camera of size (4, 4) and type float64.

name str

Camera name.

metadata dict

Dictionary of metadata.

Methods:

Name Description
__attrs_post_init__

Initialize extrinsic matrix from rotation and translation vectors.

__repr__

Return a readable representation of the camera.

get_video

Get video associated with recording session.

Source code in sleap_io/model/camera.py
@define(eq=False)  # Set eq to false to make class hashable
class Camera:
    """A camera used to record in a multi-view `RecordingSession`.

    Attributes:
        matrix: Intrinsic camera matrix of size (3, 3) and type float64.
        dist: Radial-tangential distortion coefficients [k_1, k_2, p_1, p_2, k_3] of
            size (5,) and type float64.
        size: Image size (width, height) of camera in pixels of size (2,) and type int.
        rvec: Rotation vector in unnormalized axis-angle representation of size (3,) and
            type float64.
        tvec: Translation vector of size (3,) and type float64.
        extrinsic_matrix: Extrinsic matrix of camera of size (4, 4) and type float64.
        name: Camera name.
        metadata: Dictionary of metadata.
    """

    matrix: np.ndarray = field(
        default=np.eye(3),
        converter=lambda x: np.array(x, dtype="float64"),
    )
    dist: np.ndarray = field(
        default=np.zeros(5), converter=lambda x: np.array(x, dtype="float64").ravel()
    )
    size: tuple[int, int] = field(
        default=None, converter=attrs.converters.optional(tuple)
    )
    _rvec: np.ndarray = field(
        default=np.zeros(3), converter=lambda x: np.array(x, dtype="float64").ravel()
    )
    _tvec: np.ndarray = field(
        default=np.zeros(3), converter=lambda x: np.array(x, dtype="float64").ravel()
    )
    name: str = field(default=None, converter=attrs.converters.optional(str))
    _extrinsic_matrix: np.ndarray = field(init=False)
    metadata: dict = field(factory=dict, validator=instance_of(dict))

    @matrix.validator
    @dist.validator
    @size.validator
    @_rvec.validator
    @_tvec.validator
    @_extrinsic_matrix.validator
    def _validate_shape(self, attribute: attrs.Attribute, value):
        """Validate shape of attribute based on metadata.

        Args:
            attribute: Attribute to validate.
            value: Value of attribute to validate.

        Raises:
            ValueError: If attribute shape is not as expected.
        """
        # Define metadata for each attribute
        attr_metadata = {
            "matrix": {"shape": (3, 3), "type": np.ndarray},
            "dist": {"shape": (5,), "type": np.ndarray},
            "size": {"shape": (2,), "type": tuple},
            "_rvec": {"shape": (3,), "type": np.ndarray},
            "_tvec": {"shape": (3,), "type": np.ndarray},
            "_extrinsic_matrix": {"shape": (4, 4), "type": np.ndarray},
        }
        optional_attrs = ["size"]

        # Skip validation if optional attribute is None
        if attribute.name in optional_attrs and value is None:
            return

        # Validate shape of attribute
        expected_shape = attr_metadata[attribute.name]["shape"]
        expected_type = attr_metadata[attribute.name]["type"]
        if np.shape(value) != expected_shape:
            raise ValueError(
                f"{attribute.name} must be a {expected_type} of size {expected_shape}, "
                f"but received shape: {np.shape(value)} and type: {type(value)} for "
                f"value: {value}"
            )

    def __attrs_post_init__(self):
        """Initialize extrinsic matrix from rotation and translation vectors."""
        self._extrinsic_matrix = np.eye(4, dtype="float64")
        self._extrinsic_matrix[:3, :3] = rodrigues_transformation(self._rvec)[0]
        self._extrinsic_matrix[:3, 3] = self._tvec

    @property
    def rvec(self) -> np.ndarray:
        """Get rotation vector of camera.

        Returns:
            Rotation vector of camera of size 3.
        """
        return self._rvec

    @rvec.setter
    def rvec(self, value: np.ndarray):
        """Set rotation vector and update extrinsic matrix.

        Args:
            value: Rotation vector of size 3.
        """
        self._rvec = value
        self._extrinsic_matrix[:3, :3] = rodrigues_transformation(self._rvec)[0]

    @property
    def tvec(self) -> np.ndarray:
        """Get translation vector of camera.

        Returns:
            Translation vector of camera of size 3.
        """
        return self._tvec

    @tvec.setter
    def tvec(self, value: np.ndarray):
        """Set translation vector and update extrinsic matrix.

        Args:
            value: Translation vector of size 3.
        """
        self._tvec = value

        # Update extrinsic matrix
        self._extrinsic_matrix[:3, 3] = self._tvec

    @property
    def extrinsic_matrix(self) -> np.ndarray:
        """Get extrinsic matrix of camera.

        Returns:
            Extrinsic matrix of camera of size 4 x 4.
        """
        return self._extrinsic_matrix

    @extrinsic_matrix.setter
    def extrinsic_matrix(self, value: np.ndarray):
        """Set extrinsic matrix and update rotation and translation vectors.

        Args:
            value: Extrinsic matrix of size 4 x 4.
        """
        self._extrinsic_matrix = value

        # Update rotation and translation vectors
        self._rvec = rodrigues_transformation(self._extrinsic_matrix[:3, :3])[0].ravel()
        self._tvec = self._extrinsic_matrix[:3, 3]

    def get_video(self, session: RecordingSession) -> Video | None:
        """Get video associated with recording session.

        Args:
            session: Recording session to get video for.

        Returns:
            Video associated with recording session or None if not found.
        """
        return session.get_video(camera=self)

    def __repr__(self) -> str:
        """Return a readable representation of the camera."""
        matrix_str = (
            "identity" if np.array_equal(self.matrix, np.eye(3)) else "non-identity"
        )
        dist_str = "zero" if np.array_equal(self.dist, np.zeros(5)) else "non-zero"
        size_str = "None" if self.size is None else self.size
        rvec_str = (
            "zero"
            if np.array_equal(self.rvec, np.zeros(3))
            else np.array2string(self.rvec, precision=2, suppress_small=True)
        )
        tvec_str = (
            "zero"
            if np.array_equal(self.tvec, np.zeros(3))
            else np.array2string(self.tvec, precision=2, suppress_small=True)
        )
        name_str = self.name if self.name is not None else "None"
        return (
            "Camera("
            f"matrix={matrix_str}, "
            f"dist={dist_str}, "
            f"size={size_str}, "
            f"rvec={rvec_str}, "
            f"tvec={tvec_str}, "
            f"name={name_str}"
            ")"
        )

extrinsic_matrix property writable

Get extrinsic matrix of camera.

Returns:

Type Description
ndarray

Extrinsic matrix of camera of size 4 x 4.

rvec property writable

Get rotation vector of camera.

Returns:

Type Description
ndarray

Rotation vector of camera of size 3.

tvec property writable

Get translation vector of camera.

Returns:

Type Description
ndarray

Translation vector of camera of size 3.

__attrs_post_init__()

Initialize extrinsic matrix from rotation and translation vectors.

Source code in sleap_io/model/camera.py
def __attrs_post_init__(self):
    """Initialize extrinsic matrix from rotation and translation vectors."""
    self._extrinsic_matrix = np.eye(4, dtype="float64")
    self._extrinsic_matrix[:3, :3] = rodrigues_transformation(self._rvec)[0]
    self._extrinsic_matrix[:3, 3] = self._tvec

__repr__()

Return a readable representation of the camera.

Source code in sleap_io/model/camera.py
def __repr__(self) -> str:
    """Return a readable representation of the camera."""
    matrix_str = (
        "identity" if np.array_equal(self.matrix, np.eye(3)) else "non-identity"
    )
    dist_str = "zero" if np.array_equal(self.dist, np.zeros(5)) else "non-zero"
    size_str = "None" if self.size is None else self.size
    rvec_str = (
        "zero"
        if np.array_equal(self.rvec, np.zeros(3))
        else np.array2string(self.rvec, precision=2, suppress_small=True)
    )
    tvec_str = (
        "zero"
        if np.array_equal(self.tvec, np.zeros(3))
        else np.array2string(self.tvec, precision=2, suppress_small=True)
    )
    name_str = self.name if self.name is not None else "None"
    return (
        "Camera("
        f"matrix={matrix_str}, "
        f"dist={dist_str}, "
        f"size={size_str}, "
        f"rvec={rvec_str}, "
        f"tvec={tvec_str}, "
        f"name={name_str}"
        ")"
    )

get_video(session)

Get video associated with recording session.

Parameters:

Name Type Description Default
session RecordingSession

Recording session to get video for.

required

Returns:

Type Description
Video | None

Video associated with recording session or None if not found.

Source code in sleap_io/model/camera.py
def get_video(self, session: RecordingSession) -> Video | None:
    """Get video associated with recording session.

    Args:
        session: Recording session to get video for.

    Returns:
        Video associated with recording session or None if not found.
    """
    return session.get_video(camera=self)

CameraGroup

A group of cameras used to record a multi-view RecordingSession.

Attributes:

Name Type Description
cameras list[Camera]

List of Camera objects in the group.

metadata dict

Dictionary of metadata.

Methods:

Name Description
__repr__

Return a readable representation of the camera group.

Source code in sleap_io/model/camera.py
@define
class CameraGroup:
    """A group of cameras used to record a multi-view `RecordingSession`.

    Attributes:
        cameras: List of `Camera` objects in the group.
        metadata: Dictionary of metadata.
    """

    cameras: list[Camera] = field(factory=list, validator=instance_of(list))
    metadata: dict = field(factory=dict, validator=instance_of(dict))

    def __repr__(self):
        """Return a readable representation of the camera group."""
        camera_names = ", ".join([c.name or "None" for c in self.cameras])
        return f"CameraGroup(cameras={len(self.cameras)}:[{camera_names}])"

__repr__()

Return a readable representation of the camera group.

Source code in sleap_io/model/camera.py
def __repr__(self):
    """Return a readable representation of the camera group."""
    camera_names = ", ".join([c.name or "None" for c in self.cameras])
    return f"CameraGroup(cameras={len(self.cameras)}:[{camera_names}])"

FrameGroup

Defines a group of InstanceGroups across views at the same frame index.

Attributes:

Name Type Description
frame_idx int

Frame index for the FrameGroup.

instance_groups list[InstanceGroup]

List of InstanceGroups in the FrameGroup.

cameras list[Camera]

List of Camera objects linked to LabeledFrames in the FrameGroup.

labeled_frames list[LabeledFrame]

List of LabeledFrames in the FrameGroup.

metadata dict

Metadata for the FrameGroup that is provided but not deserialized.

Methods:

Name Description
__repr__

Return a readable representation of the frame group.

get_frame

Get LabeledFrame associated with camera.

Source code in sleap_io/model/camera.py
@define(eq=False)  # Set eq to false to make class hashable
class FrameGroup:
    """Defines a group of `InstanceGroups` across views at the same frame index.

    Attributes:
        frame_idx: Frame index for the `FrameGroup`.
        instance_groups: List of `InstanceGroup`s in the `FrameGroup`.
        cameras: List of `Camera` objects linked to `LabeledFrame`s in the `FrameGroup`.
        labeled_frames: List of `LabeledFrame`s in the `FrameGroup`.
        metadata: Metadata for the `FrameGroup` that is provided but not deserialized.
    """

    frame_idx: int = field(converter=int)
    _instance_groups: list[InstanceGroup] = field(
        factory=list, validator=instance_of(list)
    )
    _labeled_frame_by_camera: dict[Camera, LabeledFrame] = field(
        factory=dict, validator=instance_of(dict)
    )
    metadata: dict = field(factory=dict, validator=instance_of(dict))

    @property
    def instance_groups(self) -> list[InstanceGroup]:
        """List of `InstanceGroup`s."""
        return self._instance_groups

    @property
    def cameras(self) -> list[Camera]:
        """List of `Camera` objects."""
        return list(self._labeled_frame_by_camera.keys())

    @property
    def labeled_frames(self) -> list[LabeledFrame]:
        """List of `LabeledFrame`s."""
        return list(self._labeled_frame_by_camera.values())

    def get_frame(self, camera: Camera) -> LabeledFrame | None:
        """Get `LabeledFrame` associated with `camera`.

        Args:
            camera: `Camera` to get `LabeledFrame`.

        Returns:
            `LabeledFrame` associated with `camera` or None if not found.
        """
        return self._labeled_frame_by_camera.get(camera, None)

    def __repr__(self) -> str:
        """Return a readable representation of the frame group."""
        cameras_str = ", ".join([c.name or "None" for c in self.cameras])
        return (
            f"FrameGroup("
            f"frame_idx={self.frame_idx},"
            f"instance_groups={len(self.instance_groups)},"
            f"cameras={len(self.cameras)}:[{cameras_str}]"
            f")"
        )

cameras property

List of Camera objects.

instance_groups property

List of InstanceGroups.

labeled_frames property

List of LabeledFrames.

__repr__()

Return a readable representation of the frame group.

Source code in sleap_io/model/camera.py
def __repr__(self) -> str:
    """Return a readable representation of the frame group."""
    cameras_str = ", ".join([c.name or "None" for c in self.cameras])
    return (
        f"FrameGroup("
        f"frame_idx={self.frame_idx},"
        f"instance_groups={len(self.instance_groups)},"
        f"cameras={len(self.cameras)}:[{cameras_str}]"
        f")"
    )

get_frame(camera)

Get LabeledFrame associated with camera.

Parameters:

Name Type Description Default
camera Camera

Camera to get LabeledFrame.

required

Returns:

Type Description
LabeledFrame | None

LabeledFrame associated with camera or None if not found.

Source code in sleap_io/model/camera.py
def get_frame(self, camera: Camera) -> LabeledFrame | None:
    """Get `LabeledFrame` associated with `camera`.

    Args:
        camera: `Camera` to get `LabeledFrame`.

    Returns:
        `LabeledFrame` associated with `camera` or None if not found.
    """
    return self._labeled_frame_by_camera.get(camera, None)

InstanceGroup

Defines a group of instances across the same frame index.

Attributes:

Name Type Description
instances_by_camera

Dictionary of Instance objects by Camera.

instances list[Instance]

List of Instance objects in the group.

cameras list[Camera]

List of Camera objects that have an Instance associated.

score float | None

Optional score for the InstanceGroup. Setting the score will also update the score for all instances already in the InstanceGroup. The score for instances will not be updated upon initialization.

points ndarray | None

Optional 3D points for the InstanceGroup.

metadata dict

Dictionary of metadata.

Methods:

Name Description
__repr__

Return a readable representation of the instance group.

get_instance

Get Instance associated with camera.

Source code in sleap_io/model/camera.py
@define(eq=False)  # Set eq to false to make class hashable
class InstanceGroup:
    """Defines a group of instances across the same frame index.

    Attributes:
        instances_by_camera: Dictionary of `Instance` objects by `Camera`.
        instances: List of `Instance` objects in the group.
        cameras: List of `Camera` objects that have an `Instance` associated.
        score: Optional score for the `InstanceGroup`. Setting the score will also
            update the score for all `instances` already in the `InstanceGroup`. The
            score for `instances` will not be updated upon initialization.
        points: Optional 3D points for the `InstanceGroup`.
        metadata: Dictionary of metadata.
    """

    _instance_by_camera: dict[Camera, Instance] = field(
        factory=dict, validator=instance_of(dict)
    )
    _score: float | None = field(
        default=None, converter=attrs.converters.optional(float)
    )
    _points: np.ndarray | None = field(
        default=None,
        converter=attrs.converters.optional(lambda x: np.array(x, dtype="float64")),
    )
    metadata: dict = field(factory=dict, validator=instance_of(dict))

    @property
    def instance_by_camera(self) -> dict[Camera, Instance]:
        """Get dictionary of `Instance` objects by `Camera`."""
        return self._instance_by_camera

    @property
    def instances(self) -> list[Instance]:
        """List of `Instance` objects."""
        return list(self._instance_by_camera.values())

    @property
    def cameras(self) -> list[Camera]:
        """List of `Camera` objects."""
        return list(self._instance_by_camera.keys())

    @property
    def score(self) -> float | None:
        """Get score for `InstanceGroup`."""
        return self._score

    @property
    def points(self) -> np.ndarray | None:
        """Get 3D points for `InstanceGroup`."""
        return self._points

    def get_instance(self, camera: Camera) -> Instance | None:
        """Get `Instance` associated with `camera`.

        Args:
            camera: `Camera` to get `Instance`.

        Returns:
            `Instance` associated with `camera` or None if not found.
        """
        return self._instance_by_camera.get(camera, None)

    def __repr__(self) -> str:
        """Return a readable representation of the instance group."""
        cameras_str = ", ".join([c.name or "None" for c in self.cameras])
        return f"InstanceGroup(cameras={len(self.cameras)}:[{cameras_str}])"

cameras property

List of Camera objects.

instance_by_camera property

Get dictionary of Instance objects by Camera.

instances property

List of Instance objects.

points property

Get 3D points for InstanceGroup.

score property

Get score for InstanceGroup.

__repr__()

Return a readable representation of the instance group.

Source code in sleap_io/model/camera.py
def __repr__(self) -> str:
    """Return a readable representation of the instance group."""
    cameras_str = ", ".join([c.name or "None" for c in self.cameras])
    return f"InstanceGroup(cameras={len(self.cameras)}:[{cameras_str}])"

get_instance(camera)

Get Instance associated with camera.

Parameters:

Name Type Description Default
camera Camera

Camera to get Instance.

required

Returns:

Type Description
Instance | None

Instance associated with camera or None if not found.

Source code in sleap_io/model/camera.py
def get_instance(self, camera: Camera) -> Instance | None:
    """Get `Instance` associated with `camera`.

    Args:
        camera: `Camera` to get `Instance`.

    Returns:
        `Instance` associated with `camera` or None if not found.
    """
    return self._instance_by_camera.get(camera, None)

RecordingSession

A recording session with multiple cameras.

Attributes:

Name Type Description
camera_group CameraGroup

CameraGroup object containing cameras in the session.

frame_groups dict[int, FrameGroup]

Dictionary mapping frame index to FrameGroup.

videos list[Video]

List of Video objects linked to Cameras in the session.

cameras list[Camera]

List of Camera objects linked to Videos in the session.

metadata dict

Dictionary of metadata.

Methods:

Name Description
__repr__

Return a readable representation of the session.

add_video

Add video to RecordingSession and mapping to camera.

get_camera

Get Camera associated with video.

get_video

Get Video associated with camera.

remove_video

Remove video from RecordingSession and mapping to Camera.

Source code in sleap_io/model/camera.py
@define(eq=False)  # Set eq to false to make class hashable
class RecordingSession:
    """A recording session with multiple cameras.

    Attributes:
        camera_group: `CameraGroup` object containing cameras in the session.
        frame_groups: Dictionary mapping frame index to `FrameGroup`.
        videos: List of `Video` objects linked to `Camera`s in the session.
        cameras: List of `Camera` objects linked to `Video`s in the session.
        metadata: Dictionary of metadata.
    """

    camera_group: CameraGroup = field(
        factory=CameraGroup, validator=instance_of(CameraGroup)
    )
    _video_by_camera: dict[Camera, Video] = field(
        factory=dict, validator=instance_of(dict)
    )
    _camera_by_video: dict[Video, Camera] = field(
        factory=dict, validator=instance_of(dict)
    )
    _frame_group_by_frame_idx: dict[int, FrameGroup] = field(
        factory=dict, validator=instance_of(dict)
    )
    metadata: dict = field(factory=dict, validator=instance_of(dict))

    @property
    def frame_groups(self) -> dict[int, FrameGroup]:
        """Get dictionary of `FrameGroup` objects by frame index.

        Returns:
            Dictionary of `FrameGroup` objects by frame index.
        """
        return self._frame_group_by_frame_idx

    @property
    def videos(self) -> list[Video]:
        """Get list of `Video` objects in the `RecordingSession`.

        Returns:
            List of `Video` objects in `RecordingSession`.
        """
        return list(self._video_by_camera.values())

    @property
    def cameras(self) -> list[Camera]:
        """Get list of `Camera` objects linked to `Video`s in the `RecordingSession`.

        Returns:
            List of `Camera` objects in `RecordingSession`.
        """
        return list(self._video_by_camera.keys())

    def get_camera(self, video: Video) -> Camera | None:
        """Get `Camera` associated with `video`.

        Args:
            video: `Video` to get `Camera`

        Returns:
            `Camera` associated with `video` or None if not found
        """
        return self._camera_by_video.get(video, None)

    def get_video(self, camera: Camera) -> Video | None:
        """Get `Video` associated with `camera`.

        Args:
            camera: `Camera` to get `Video`

        Returns:
            `Video` associated with `camera` or None if not found
        """
        return self._video_by_camera.get(camera, None)

    def add_video(self, video: Video, camera: Camera):
        """Add `video` to `RecordingSession` and mapping to `camera`.

        Args:
            video: `Video` object to add to `RecordingSession`.
            camera: `Camera` object to associate with `video`.

        Raises:
            ValueError: If `camera` is not in associated `CameraGroup`.
            ValueError: If `video` is not a `Video` object.
        """
        # Raise ValueError if camera is not in associated camera group
        self.camera_group.cameras.index(camera)

        # Raise ValueError if `Video` is not a `Video` object
        if not isinstance(video, Video):
            raise ValueError(
                f"Expected `Video` object, but received {type(video)} object."
            )

        # Add camera to video mapping
        self._video_by_camera[camera] = video

        # Add video to camera mapping
        self._camera_by_video[video] = camera

    def remove_video(self, video: Video):
        """Remove `video` from `RecordingSession` and mapping to `Camera`.

        Args:
            video: `Video` object to remove from `RecordingSession`.

        Raises:
            ValueError: If `video` is not in associated `RecordingSession`.
        """
        # Remove video from camera mapping
        camera = self._camera_by_video.pop(video)

        # Remove camera from video mapping
        self._video_by_camera.pop(camera)

    def __repr__(self) -> str:
        """Return a readable representation of the session."""
        return (
            "RecordingSession("
            f"camera_group={len(self.camera_group.cameras)}cameras, "
            f"videos={len(self.videos)}, "
            f"frame_groups={len(self.frame_groups)}"
            ")"
        )

cameras property

Get list of Camera objects linked to Videos in the RecordingSession.

Returns:

Type Description
list[Camera]

List of Camera objects in RecordingSession.

frame_groups property

Get dictionary of FrameGroup objects by frame index.

Returns:

Type Description
dict[int, FrameGroup]

Dictionary of FrameGroup objects by frame index.

videos property

Get list of Video objects in the RecordingSession.

Returns:

Type Description
list[Video]

List of Video objects in RecordingSession.

__repr__()

Return a readable representation of the session.

Source code in sleap_io/model/camera.py
def __repr__(self) -> str:
    """Return a readable representation of the session."""
    return (
        "RecordingSession("
        f"camera_group={len(self.camera_group.cameras)}cameras, "
        f"videos={len(self.videos)}, "
        f"frame_groups={len(self.frame_groups)}"
        ")"
    )

add_video(video, camera)

Add video to RecordingSession and mapping to camera.

Parameters:

Name Type Description Default
video Video

Video object to add to RecordingSession.

required
camera Camera

Camera object to associate with video.

required

Raises:

Type Description
ValueError

If camera is not in associated CameraGroup.

ValueError

If video is not a Video object.

Source code in sleap_io/model/camera.py
def add_video(self, video: Video, camera: Camera):
    """Add `video` to `RecordingSession` and mapping to `camera`.

    Args:
        video: `Video` object to add to `RecordingSession`.
        camera: `Camera` object to associate with `video`.

    Raises:
        ValueError: If `camera` is not in associated `CameraGroup`.
        ValueError: If `video` is not a `Video` object.
    """
    # Raise ValueError if camera is not in associated camera group
    self.camera_group.cameras.index(camera)

    # Raise ValueError if `Video` is not a `Video` object
    if not isinstance(video, Video):
        raise ValueError(
            f"Expected `Video` object, but received {type(video)} object."
        )

    # Add camera to video mapping
    self._video_by_camera[camera] = video

    # Add video to camera mapping
    self._camera_by_video[video] = camera

get_camera(video)

Get Camera associated with video.

Parameters:

Name Type Description Default
video Video

Video to get Camera

required

Returns:

Type Description
Camera | None

Camera associated with video or None if not found

Source code in sleap_io/model/camera.py
def get_camera(self, video: Video) -> Camera | None:
    """Get `Camera` associated with `video`.

    Args:
        video: `Video` to get `Camera`

    Returns:
        `Camera` associated with `video` or None if not found
    """
    return self._camera_by_video.get(video, None)

get_video(camera)

Get Video associated with camera.

Parameters:

Name Type Description Default
camera Camera

Camera to get Video

required

Returns:

Type Description
Video | None

Video associated with camera or None if not found

Source code in sleap_io/model/camera.py
def get_video(self, camera: Camera) -> Video | None:
    """Get `Video` associated with `camera`.

    Args:
        camera: `Camera` to get `Video`

    Returns:
        `Video` associated with `camera` or None if not found
    """
    return self._video_by_camera.get(camera, None)

remove_video(video)

Remove video from RecordingSession and mapping to Camera.

Parameters:

Name Type Description Default
video Video

Video object to remove from RecordingSession.

required

Raises:

Type Description
ValueError

If video is not in associated RecordingSession.

Source code in sleap_io/model/camera.py
def remove_video(self, video: Video):
    """Remove `video` from `RecordingSession` and mapping to `Camera`.

    Args:
        video: `Video` object to remove from `RecordingSession`.

    Raises:
        ValueError: If `video` is not in associated `RecordingSession`.
    """
    # Remove video from camera mapping
    camera = self._camera_by_video.pop(video)

    # Remove camera from video mapping
    self._video_by_camera.pop(camera)

rodrigues_transformation(input_matrix)

Convert between rotation vector and rotation matrix using Rodrigues' formula.

This function implements the Rodrigues' rotation formula to convert between: 1. A 3D rotation vector (axis-angle representation) to a 3x3 rotation matrix 2. A 3x3 rotation matrix to a 3D rotation vector

Parameters:

Name Type Description Default
input_matrix ndarray

A 3x3 rotation matrix or a 3x1 rotation vector.

required

Returns:

Type Description
tuple[ndarray, ndarray]

A tuple containing the converted matrix/vector and the Jacobian (None for now).

Raises:

Type Description
ValueError

If the input is not a valid rotation matrix or vector.

Source code in sleap_io/model/camera.py
def rodrigues_transformation(input_matrix: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
    """Convert between rotation vector and rotation matrix using Rodrigues' formula.

    This function implements the Rodrigues' rotation formula to convert between:
    1. A 3D rotation vector (axis-angle representation) to a 3x3 rotation matrix
    2. A 3x3 rotation matrix to a 3D rotation vector

    Args:
        input_matrix: A 3x3 rotation matrix or a 3x1 rotation vector.

    Returns:
        A tuple containing the converted matrix/vector and the Jacobian (None for now).

    Raises:
        ValueError: If the input is not a valid rotation matrix or vector.
    """
    # Matrix to vector conversion
    if input_matrix.shape == (3, 3):
        # Get the rotation angle (trace(R) = 1 + 2*cos(theta))
        cos_theta = (np.trace(input_matrix) - 1) / 2.0
        cos_theta = np.clip(cos_theta, -1.0, 1.0)  # Ensure numerical stability
        theta = np.arccos(cos_theta)

        # Handle small angles or identity rotation
        if np.isclose(theta, 0.0, atol=1e-8):
            # For small angles or identity, return zero vector
            return np.zeros(3), None

        # Compute the rotation axis
        sin_theta = np.sin(theta)
        if np.isclose(sin_theta, 0.0, atol=1e-8):
            # Handle 180-degree rotation (sin_theta = 0)
            # Find the largest diagonal element
            diag = np.diag(input_matrix)
            k = np.argmax(diag)
            axis = np.zeros(3)
            if diag[k] > -1.0:
                # Extract the column with largest diagonal
                axis[k] = 1.0
                v = input_matrix[:, k] + axis
                axis = v / np.linalg.norm(v)
            rvec = theta * axis
        else:
            # Normal case: extract the skew-symmetric part
            axis = np.array(
                [
                    input_matrix[2, 1] - input_matrix[1, 2],
                    input_matrix[0, 2] - input_matrix[2, 0],
                    input_matrix[1, 0] - input_matrix[0, 1],
                ]
            ) / (2.0 * sin_theta)

            # Ensure the axis is a unit vector
            axis_norm = np.linalg.norm(axis)
            if axis_norm > 0:
                axis = axis / axis_norm

            rvec = theta * axis

        return rvec, None

    # Vector to matrix conversion
    elif input_matrix.shape == (3,) or input_matrix.shape == (3, 1):
        # Handle both flat and column vectors
        rvec = input_matrix.ravel()
        theta = np.linalg.norm(rvec)

        # Handle small angles
        if np.isclose(theta, 0.0, atol=1e-8):
            return np.eye(3), None

        # Normalize the rotation axis
        axis = rvec / theta

        # Create the cross-product matrix
        K = np.array(
            [[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]], [-axis[1], axis[0], 0]]
        )

        # Rodrigues' formula: R = I + sin(θ)K + (1-cos(θ))K²
        sin_theta = np.sin(theta)
        cos_theta = np.cos(theta)
        K_squared = np.dot(K, K)

        rotation_matrix = np.eye(3) + sin_theta * K + (1.0 - cos_theta) * K_squared

        return rotation_matrix, None

    else:
        raise ValueError(
            f"Input must be a 3x3 matrix or a 3-element vector, got shape {input_matrix.shape}"
        )