Skip to content

video

sleap_io.model.video

Data model for videos.

The Video class is a SLEAP data structure that stores information regarding a video and its components used in SLEAP.

Classes:

Name Description
Video

Video class used by sleap to represent videos and data associated with them.

Video

Video class used by sleap to represent videos and data associated with them.

This class is used to store information regarding a video and its components. It is used to store the video's filename, shape, and the video's backend.

To create a Video object, use the from_filename method which will select the backend appropriately.

Attributes:

Name Type Description
filename str | list[str]

The filename(s) of the video. Supported extensions: "mp4", "avi", "mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif", "tiff", "bmp". If the filename is a list, a list of image filenames are expected. If filename is a folder, it will be searched for images.

backend Optional[VideoBackend]

An object that implements the basic methods for reading and manipulating frames of a specific video type.

backend_metadata dict[str, any]

A dictionary of metadata specific to the backend. This is useful for storing metadata that requires an open backend (e.g., shape information) without having access to the video file itself.

source_video Optional[Video]

The source video object if this is a proxy video. This is present when the video contains an embedded subset of frames from another video.

open_backend bool

Whether to open the backend when the video is available. If True (the default), the backend will be automatically opened if the video exists. Set this to False when you want to manually open the backend, or when the you know the video file does not exist and you want to avoid trying to open the file.

Notes

Instances of this class are hashed by identity, not by value. This means that two Video instances with the same attributes will NOT be considered equal in a set or dict.

See also: VideoBackend

Methods:

Name Description
__attrs_post_init__

Post init syntactic sugar.

__deepcopy__

Deep copy the video object.

__getitem__

Return the frames of the video at the given indices.

__len__

Return the length of the video as the number of frames.

__repr__

Informal string representation (for print or format).

__str__

Informal string representation (for print or format).

close

Close the video backend.

exists

Check if the video file exists and is accessible.

from_filename

Create a Video from a filename.

open

Open the video backend for reading.

replace_filename

Update the filename of the video, optionally opening the backend.

save

Save video frames to a new video file.

Attributes:

Name Type Description
grayscale bool | None

Return whether the video is grayscale.

is_open bool

Check if the video backend is open.

shape Tuple[int, int, int, int] | None

Return the shape of the video as (num_frames, height, width, channels).

Source code in sleap_io/model/video.py
@attrs.define(eq=False)
class Video:
    """`Video` class used by sleap to represent videos and data associated with them.

    This class is used to store information regarding a video and its components.
    It is used to store the video's `filename`, `shape`, and the video's `backend`.

    To create a `Video` object, use the `from_filename` method which will select the
    backend appropriately.

    Attributes:
        filename: The filename(s) of the video. Supported extensions: "mp4", "avi",
            "mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif",
            "tiff", "bmp". If the filename is a list, a list of image filenames are
            expected. If filename is a folder, it will be searched for images.
        backend: An object that implements the basic methods for reading and
            manipulating frames of a specific video type.
        backend_metadata: A dictionary of metadata specific to the backend. This is
            useful for storing metadata that requires an open backend (e.g., shape
            information) without having access to the video file itself.
        source_video: The source video object if this is a proxy video. This is present
            when the video contains an embedded subset of frames from another video.
        open_backend: Whether to open the backend when the video is available. If `True`
            (the default), the backend will be automatically opened if the video exists.
            Set this to `False` when you want to manually open the backend, or when the
            you know the video file does not exist and you want to avoid trying to open
            the file.

    Notes:
        Instances of this class are hashed by identity, not by value. This means that
        two `Video` instances with the same attributes will NOT be considered equal in a
        set or dict.

    See also: VideoBackend
    """

    filename: str | list[str]
    backend: Optional[VideoBackend] = None
    backend_metadata: dict[str, any] = attrs.field(factory=dict)
    source_video: Optional[Video] = None
    open_backend: bool = True

    EXTS = MediaVideo.EXTS + HDF5Video.EXTS + ImageVideo.EXTS

    def __attrs_post_init__(self):
        """Post init syntactic sugar."""
        if self.open_backend and self.backend is None and self.exists():
            try:
                self.open()
            except Exception as e:
                # If we can't open the backend, just ignore it for now so we don't
                # prevent the user from building the Video object entirely.
                pass

    def __deepcopy__(self, memo):
        """Deep copy the video object."""
        if id(self) in memo:
            return memo[id(self)]

        reopen = False
        if self.is_open:
            reopen = True
            self.close()

        new_video = Video(
            filename=self.filename,
            backend=None,
            backend_metadata=self.backend_metadata,
            source_video=self.source_video,
            open_backend=self.open_backend,
        )

        memo[id(self)] = new_video

        if reopen:
            self.open()

        return new_video

    @classmethod
    def from_filename(
        cls,
        filename: str | list[str],
        dataset: Optional[str] = None,
        grayscale: Optional[bool] = None,
        keep_open: bool = True,
        source_video: Optional[Video] = None,
        **kwargs,
    ) -> VideoBackend:
        """Create a Video from a filename.

        Args:
            filename: The filename(s) of the video. Supported extensions: "mp4", "avi",
                "mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif",
                "tiff", "bmp". If the filename is a list, a list of image filenames are
                expected. If filename is a folder, it will be searched for images.
            dataset: Name of dataset in HDF5 file.
            grayscale: Whether to force grayscale. If None, autodetect on first frame
                load.
            keep_open: Whether to keep the video reader open between calls to read
                frames. If False, will close the reader after each call. If True (the
                default), it will keep the reader open and cache it for subsequent calls
                which may enhance the performance of reading multiple frames.
            source_video: The source video object if this is a proxy video. This is
                present when the video contains an embedded subset of frames from
                another video.

        Returns:
            Video instance with the appropriate backend instantiated.
        """
        return cls(
            filename=filename,
            backend=VideoBackend.from_filename(
                filename,
                dataset=dataset,
                grayscale=grayscale,
                keep_open=keep_open,
                **kwargs,
            ),
            source_video=source_video,
        )

    @property
    def shape(self) -> Tuple[int, int, int, int] | None:
        """Return the shape of the video as (num_frames, height, width, channels).

        If the video backend is not set or it cannot determine the shape of the video,
        this will return None.
        """
        return self._get_shape()

    def _get_shape(self) -> Tuple[int, int, int, int] | None:
        """Return the shape of the video as (num_frames, height, width, channels).

        This suppresses errors related to querying the backend for the video shape, such
        as when it has not been set or when the video file is not found.
        """
        try:
            return self.backend.shape
        except:
            if "shape" in self.backend_metadata:
                return self.backend_metadata["shape"]
            return None

    @property
    def grayscale(self) -> bool | None:
        """Return whether the video is grayscale.

        If the video backend is not set or it cannot determine whether the video is
        grayscale, this will return None.
        """
        shape = self.shape
        if shape is not None:
            return shape[-1] == 1
        else:
            grayscale = None
            if "grayscale" in self.backend_metadata:
                grayscale = self.backend_metadata["grayscale"]
            return grayscale

    @grayscale.setter
    def grayscale(self, value: bool):
        """Set the grayscale value and adjust the backend."""
        if self.backend is not None:
            self.backend.grayscale = value
            self.backend._cached_shape = None

        self.backend_metadata["grayscale"] = value

    def __len__(self) -> int:
        """Return the length of the video as the number of frames."""
        shape = self.shape
        return 0 if shape is None else shape[0]

    def __repr__(self) -> str:
        """Informal string representation (for print or format)."""
        dataset = (
            f"dataset={self.backend.dataset}, "
            if getattr(self.backend, "dataset", "")
            else ""
        )
        return (
            "Video("
            f'filename="{self.filename}", '
            f"shape={self.shape}, "
            f"{dataset}"
            f"backend={type(self.backend).__name__}"
            ")"
        )

    def __str__(self) -> str:
        """Informal string representation (for print or format)."""
        return self.__repr__()

    def __getitem__(self, inds: int | list[int] | slice) -> np.ndarray:
        """Return the frames of the video at the given indices.

        Args:
            inds: Index or list of indices of frames to read.

        Returns:
            Frame or frames as a numpy array of shape `(height, width, channels)` if a
            scalar index is provided, or `(frames, height, width, channels)` if a list
            of indices is provided.

        See also: VideoBackend.get_frame, VideoBackend.get_frames
        """
        if not self.is_open:
            if self.open_backend:
                self.open()
            else:
                raise ValueError(
                    "Video backend is not open. Call video.open() or set "
                    "video.open_backend to True to do automatically on frame read."
                )
        return self.backend[inds]

    def exists(self, check_all: bool = False, dataset: str | None = None) -> bool:
        """Check if the video file exists and is accessible.

        Args:
            check_all: If `True`, check that all filenames in a list exist. If `False`
                (the default), check that the first filename exists.
            dataset: Name of dataset in HDF5 file. If specified, this will function will
                return `False` if the dataset does not exist.

        Returns:
            `True` if the file exists and is accessible, `False` otherwise.
        """
        if isinstance(self.filename, list):
            if check_all:
                for f in self.filename:
                    if not is_file_accessible(f):
                        return False
                return True
            else:
                return is_file_accessible(self.filename[0])

        file_is_accessible = is_file_accessible(self.filename)
        if not file_is_accessible:
            return False

        if dataset is None or dataset == "":
            dataset = self.backend_metadata.get("dataset", None)

        if dataset is not None and dataset != "":
            has_dataset = False
            if (
                self.backend is not None
                and type(self.backend) == HDF5Video
                and self.backend._open_reader is not None
            ):
                has_dataset = dataset in self.backend._open_reader
            else:
                with h5py.File(self.filename, "r") as f:
                    has_dataset = dataset in f
            return has_dataset

        return True

    @property
    def is_open(self) -> bool:
        """Check if the video backend is open."""
        return self.exists() and self.backend is not None

    def open(
        self,
        filename: Optional[str] = None,
        dataset: Optional[str] = None,
        grayscale: Optional[str] = None,
        keep_open: bool = True,
    ):
        """Open the video backend for reading.

        Args:
            filename: Filename to open. If not specified, will use the filename set on
                the video object.
            dataset: Name of dataset in HDF5 file.
            grayscale: Whether to force grayscale. If None, autodetect on first frame
                load.
            keep_open: Whether to keep the video reader open between calls to read
                frames. If False, will close the reader after each call. If True (the
                default), it will keep the reader open and cache it for subsequent calls
                which may enhance the performance of reading multiple frames.

        Notes:
            This is useful for opening the video backend to read frames and then closing
            it after reading all the necessary frames.

            If the backend was already open, it will be closed before opening a new one.
            Values for the HDF5 dataset and grayscale will be remembered if not
            specified.
        """
        if filename is not None:
            self.replace_filename(filename, open=False)

        # Try to remember values from previous backend if available and not specified.
        if self.backend is not None:
            if dataset is None:
                dataset = getattr(self.backend, "dataset", None)
            if grayscale is None:
                grayscale = getattr(self.backend, "grayscale", None)

        else:
            if dataset is None and "dataset" in self.backend_metadata:
                dataset = self.backend_metadata["dataset"]
            if grayscale is None:
                if "grayscale" in self.backend_metadata:
                    grayscale = self.backend_metadata["grayscale"]
                elif "shape" in self.backend_metadata:
                    grayscale = self.backend_metadata["shape"][-1] == 1

        if not self.exists(dataset=dataset):
            msg = f"Video does not exist or is inaccessible: {self.filename}"
            if dataset is not None:
                msg += f" (dataset: {dataset})"
            raise FileNotFoundError(msg)

        # Close previous backend if open.
        self.close()

        # Create new backend.
        self.backend = VideoBackend.from_filename(
            self.filename,
            dataset=dataset,
            grayscale=grayscale,
            keep_open=keep_open,
        )

    def close(self):
        """Close the video backend."""
        if self.backend is not None:
            # Try to remember values from previous backend if available and not
            # specified.
            try:
                self.backend_metadata["dataset"] = getattr(
                    self.backend, "dataset", None
                )
                self.backend_metadata["grayscale"] = getattr(
                    self.backend, "grayscale", None
                )
                self.backend_metadata["shape"] = getattr(self.backend, "shape", None)
            except:
                pass

            del self.backend
            self.backend = None

    def replace_filename(
        self, new_filename: str | Path | list[str] | list[Path], open: bool = True
    ):
        """Update the filename of the video, optionally opening the backend.

        Args:
            new_filename: New filename to set for the video.
            open: If `True` (the default), open the backend with the new filename. If
                the new filename does not exist, no error is raised.
        """
        if isinstance(new_filename, Path):
            new_filename = new_filename.as_posix()

        if isinstance(new_filename, list):
            new_filename = [
                p.as_posix() if isinstance(p, Path) else p for p in new_filename
            ]

        self.filename = new_filename
        self.backend_metadata["filename"] = new_filename

        if open:
            if self.exists():
                self.open()
            else:
                self.close()

    def save(
        self,
        save_path: str | Path,
        frame_inds: list[int] | np.ndarray | None = None,
        video_kwargs: dict[str, Any] | None = None,
    ) -> Video:
        """Save video frames to a new video file.

        Args:
            save_path: Path to the new video file. Should end in MP4.
            frame_inds: Frame indices to save. Can be specified as a list or array of
                frame integers. If not specified, saves all video frames.
            video_kwargs: A dictionary of keyword arguments to provide to
                `sio.save_video` for video compression.

        Returns:
            A new `Video` object pointing to the new video file.
        """
        video_kwargs = {} if video_kwargs is None else video_kwargs
        frame_inds = np.arange(len(self)) if frame_inds is None else frame_inds

        with VideoWriter(save_path, **video_kwargs) as vw:
            for frame_ind in frame_inds:
                vw(self[frame_ind])

        new_video = Video.from_filename(save_path, grayscale=self.grayscale)
        return new_video

grayscale: bool | None property writable

Return whether the video is grayscale.

If the video backend is not set or it cannot determine whether the video is grayscale, this will return None.

is_open: bool property

Check if the video backend is open.

shape: Tuple[int, int, int, int] | None property

Return the shape of the video as (num_frames, height, width, channels).

If the video backend is not set or it cannot determine the shape of the video, this will return None.

__attrs_post_init__()

Post init syntactic sugar.

Source code in sleap_io/model/video.py
def __attrs_post_init__(self):
    """Post init syntactic sugar."""
    if self.open_backend and self.backend is None and self.exists():
        try:
            self.open()
        except Exception as e:
            # If we can't open the backend, just ignore it for now so we don't
            # prevent the user from building the Video object entirely.
            pass

__deepcopy__(memo)

Deep copy the video object.

Source code in sleap_io/model/video.py
def __deepcopy__(self, memo):
    """Deep copy the video object."""
    if id(self) in memo:
        return memo[id(self)]

    reopen = False
    if self.is_open:
        reopen = True
        self.close()

    new_video = Video(
        filename=self.filename,
        backend=None,
        backend_metadata=self.backend_metadata,
        source_video=self.source_video,
        open_backend=self.open_backend,
    )

    memo[id(self)] = new_video

    if reopen:
        self.open()

    return new_video

__getitem__(inds)

Return the frames of the video at the given indices.

Parameters:

Name Type Description Default
inds int | list[int] | slice

Index or list of indices of frames to read.

required

Returns:

Type Description
ndarray

Frame or frames as a numpy array of shape (height, width, channels) if a scalar index is provided, or (frames, height, width, channels) if a list of indices is provided.

See also: VideoBackend.get_frame, VideoBackend.get_frames

Source code in sleap_io/model/video.py
def __getitem__(self, inds: int | list[int] | slice) -> np.ndarray:
    """Return the frames of the video at the given indices.

    Args:
        inds: Index or list of indices of frames to read.

    Returns:
        Frame or frames as a numpy array of shape `(height, width, channels)` if a
        scalar index is provided, or `(frames, height, width, channels)` if a list
        of indices is provided.

    See also: VideoBackend.get_frame, VideoBackend.get_frames
    """
    if not self.is_open:
        if self.open_backend:
            self.open()
        else:
            raise ValueError(
                "Video backend is not open. Call video.open() or set "
                "video.open_backend to True to do automatically on frame read."
            )
    return self.backend[inds]

__len__()

Return the length of the video as the number of frames.

Source code in sleap_io/model/video.py
def __len__(self) -> int:
    """Return the length of the video as the number of frames."""
    shape = self.shape
    return 0 if shape is None else shape[0]

__repr__()

Informal string representation (for print or format).

Source code in sleap_io/model/video.py
def __repr__(self) -> str:
    """Informal string representation (for print or format)."""
    dataset = (
        f"dataset={self.backend.dataset}, "
        if getattr(self.backend, "dataset", "")
        else ""
    )
    return (
        "Video("
        f'filename="{self.filename}", '
        f"shape={self.shape}, "
        f"{dataset}"
        f"backend={type(self.backend).__name__}"
        ")"
    )

__str__()

Informal string representation (for print or format).

Source code in sleap_io/model/video.py
def __str__(self) -> str:
    """Informal string representation (for print or format)."""
    return self.__repr__()

close()

Close the video backend.

Source code in sleap_io/model/video.py
def close(self):
    """Close the video backend."""
    if self.backend is not None:
        # Try to remember values from previous backend if available and not
        # specified.
        try:
            self.backend_metadata["dataset"] = getattr(
                self.backend, "dataset", None
            )
            self.backend_metadata["grayscale"] = getattr(
                self.backend, "grayscale", None
            )
            self.backend_metadata["shape"] = getattr(self.backend, "shape", None)
        except:
            pass

        del self.backend
        self.backend = None

exists(check_all=False, dataset=None)

Check if the video file exists and is accessible.

Parameters:

Name Type Description Default
check_all bool

If True, check that all filenames in a list exist. If False (the default), check that the first filename exists.

False
dataset str | None

Name of dataset in HDF5 file. If specified, this will function will return False if the dataset does not exist.

None

Returns:

Type Description
bool

True if the file exists and is accessible, False otherwise.

Source code in sleap_io/model/video.py
def exists(self, check_all: bool = False, dataset: str | None = None) -> bool:
    """Check if the video file exists and is accessible.

    Args:
        check_all: If `True`, check that all filenames in a list exist. If `False`
            (the default), check that the first filename exists.
        dataset: Name of dataset in HDF5 file. If specified, this will function will
            return `False` if the dataset does not exist.

    Returns:
        `True` if the file exists and is accessible, `False` otherwise.
    """
    if isinstance(self.filename, list):
        if check_all:
            for f in self.filename:
                if not is_file_accessible(f):
                    return False
            return True
        else:
            return is_file_accessible(self.filename[0])

    file_is_accessible = is_file_accessible(self.filename)
    if not file_is_accessible:
        return False

    if dataset is None or dataset == "":
        dataset = self.backend_metadata.get("dataset", None)

    if dataset is not None and dataset != "":
        has_dataset = False
        if (
            self.backend is not None
            and type(self.backend) == HDF5Video
            and self.backend._open_reader is not None
        ):
            has_dataset = dataset in self.backend._open_reader
        else:
            with h5py.File(self.filename, "r") as f:
                has_dataset = dataset in f
        return has_dataset

    return True

from_filename(filename, dataset=None, grayscale=None, keep_open=True, source_video=None, **kwargs) classmethod

Create a Video from a filename.

Parameters:

Name Type Description Default
filename str | list[str]

The filename(s) of the video. Supported extensions: "mp4", "avi", "mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif", "tiff", "bmp". If the filename is a list, a list of image filenames are expected. If filename is a folder, it will be searched for images.

required
dataset Optional[str]

Name of dataset in HDF5 file.

None
grayscale Optional[bool]

Whether to force grayscale. If None, autodetect on first frame load.

None
keep_open bool

Whether to keep the video reader open between calls to read frames. If False, will close the reader after each call. If True (the default), it will keep the reader open and cache it for subsequent calls which may enhance the performance of reading multiple frames.

True
source_video Optional[Video]

The source video object if this is a proxy video. This is present when the video contains an embedded subset of frames from another video.

None

Returns:

Type Description
VideoBackend

Video instance with the appropriate backend instantiated.

Source code in sleap_io/model/video.py
@classmethod
def from_filename(
    cls,
    filename: str | list[str],
    dataset: Optional[str] = None,
    grayscale: Optional[bool] = None,
    keep_open: bool = True,
    source_video: Optional[Video] = None,
    **kwargs,
) -> VideoBackend:
    """Create a Video from a filename.

    Args:
        filename: The filename(s) of the video. Supported extensions: "mp4", "avi",
            "mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif",
            "tiff", "bmp". If the filename is a list, a list of image filenames are
            expected. If filename is a folder, it will be searched for images.
        dataset: Name of dataset in HDF5 file.
        grayscale: Whether to force grayscale. If None, autodetect on first frame
            load.
        keep_open: Whether to keep the video reader open between calls to read
            frames. If False, will close the reader after each call. If True (the
            default), it will keep the reader open and cache it for subsequent calls
            which may enhance the performance of reading multiple frames.
        source_video: The source video object if this is a proxy video. This is
            present when the video contains an embedded subset of frames from
            another video.

    Returns:
        Video instance with the appropriate backend instantiated.
    """
    return cls(
        filename=filename,
        backend=VideoBackend.from_filename(
            filename,
            dataset=dataset,
            grayscale=grayscale,
            keep_open=keep_open,
            **kwargs,
        ),
        source_video=source_video,
    )

open(filename=None, dataset=None, grayscale=None, keep_open=True)

Open the video backend for reading.

Parameters:

Name Type Description Default
filename Optional[str]

Filename to open. If not specified, will use the filename set on the video object.

None
dataset Optional[str]

Name of dataset in HDF5 file.

None
grayscale Optional[str]

Whether to force grayscale. If None, autodetect on first frame load.

None
keep_open bool

Whether to keep the video reader open between calls to read frames. If False, will close the reader after each call. If True (the default), it will keep the reader open and cache it for subsequent calls which may enhance the performance of reading multiple frames.

True
Notes

This is useful for opening the video backend to read frames and then closing it after reading all the necessary frames.

If the backend was already open, it will be closed before opening a new one. Values for the HDF5 dataset and grayscale will be remembered if not specified.

Source code in sleap_io/model/video.py
def open(
    self,
    filename: Optional[str] = None,
    dataset: Optional[str] = None,
    grayscale: Optional[str] = None,
    keep_open: bool = True,
):
    """Open the video backend for reading.

    Args:
        filename: Filename to open. If not specified, will use the filename set on
            the video object.
        dataset: Name of dataset in HDF5 file.
        grayscale: Whether to force grayscale. If None, autodetect on first frame
            load.
        keep_open: Whether to keep the video reader open between calls to read
            frames. If False, will close the reader after each call. If True (the
            default), it will keep the reader open and cache it for subsequent calls
            which may enhance the performance of reading multiple frames.

    Notes:
        This is useful for opening the video backend to read frames and then closing
        it after reading all the necessary frames.

        If the backend was already open, it will be closed before opening a new one.
        Values for the HDF5 dataset and grayscale will be remembered if not
        specified.
    """
    if filename is not None:
        self.replace_filename(filename, open=False)

    # Try to remember values from previous backend if available and not specified.
    if self.backend is not None:
        if dataset is None:
            dataset = getattr(self.backend, "dataset", None)
        if grayscale is None:
            grayscale = getattr(self.backend, "grayscale", None)

    else:
        if dataset is None and "dataset" in self.backend_metadata:
            dataset = self.backend_metadata["dataset"]
        if grayscale is None:
            if "grayscale" in self.backend_metadata:
                grayscale = self.backend_metadata["grayscale"]
            elif "shape" in self.backend_metadata:
                grayscale = self.backend_metadata["shape"][-1] == 1

    if not self.exists(dataset=dataset):
        msg = f"Video does not exist or is inaccessible: {self.filename}"
        if dataset is not None:
            msg += f" (dataset: {dataset})"
        raise FileNotFoundError(msg)

    # Close previous backend if open.
    self.close()

    # Create new backend.
    self.backend = VideoBackend.from_filename(
        self.filename,
        dataset=dataset,
        grayscale=grayscale,
        keep_open=keep_open,
    )

replace_filename(new_filename, open=True)

Update the filename of the video, optionally opening the backend.

Parameters:

Name Type Description Default
new_filename str | Path | list[str] | list[Path]

New filename to set for the video.

required
open bool

If True (the default), open the backend with the new filename. If the new filename does not exist, no error is raised.

True
Source code in sleap_io/model/video.py
def replace_filename(
    self, new_filename: str | Path | list[str] | list[Path], open: bool = True
):
    """Update the filename of the video, optionally opening the backend.

    Args:
        new_filename: New filename to set for the video.
        open: If `True` (the default), open the backend with the new filename. If
            the new filename does not exist, no error is raised.
    """
    if isinstance(new_filename, Path):
        new_filename = new_filename.as_posix()

    if isinstance(new_filename, list):
        new_filename = [
            p.as_posix() if isinstance(p, Path) else p for p in new_filename
        ]

    self.filename = new_filename
    self.backend_metadata["filename"] = new_filename

    if open:
        if self.exists():
            self.open()
        else:
            self.close()

save(save_path, frame_inds=None, video_kwargs=None)

Save video frames to a new video file.

Parameters:

Name Type Description Default
save_path str | Path

Path to the new video file. Should end in MP4.

required
frame_inds list[int] | ndarray | None

Frame indices to save. Can be specified as a list or array of frame integers. If not specified, saves all video frames.

None
video_kwargs dict[str, Any] | None

A dictionary of keyword arguments to provide to sio.save_video for video compression.

None

Returns:

Type Description
Video

A new Video object pointing to the new video file.

Source code in sleap_io/model/video.py
def save(
    self,
    save_path: str | Path,
    frame_inds: list[int] | np.ndarray | None = None,
    video_kwargs: dict[str, Any] | None = None,
) -> Video:
    """Save video frames to a new video file.

    Args:
        save_path: Path to the new video file. Should end in MP4.
        frame_inds: Frame indices to save. Can be specified as a list or array of
            frame integers. If not specified, saves all video frames.
        video_kwargs: A dictionary of keyword arguments to provide to
            `sio.save_video` for video compression.

    Returns:
        A new `Video` object pointing to the new video file.
    """
    video_kwargs = {} if video_kwargs is None else video_kwargs
    frame_inds = np.arange(len(self)) if frame_inds is None else frame_inds

    with VideoWriter(save_path, **video_kwargs) as vw:
        for frame_ind in frame_inds:
            vw(self[frame_ind])

    new_video = Video.from_filename(save_path, grayscale=self.grayscale)
    return new_video