Examples¶
Load and save in different formats¶
import sleap_io as sio
# Load from SLEAP file.
labels = sio.load_file("predictions.slp")
# Save to NWB file.
labels.save("predictions.nwb")
See also: Labels.save
and Formats
Convert labels to raw arrays¶
import sleap_io as sio
labels = sio.load_slp("tests/data/slp/centered_pair_predictions.slp")
# Convert predictions to point coordinates in a single array.
trx = labels.numpy()
n_frames, n_tracks, n_nodes, xy = trx.shape
assert xy == 2
# Convert to array with confidence scores appended.
trx_with_scores = labels.numpy(return_confidence=True)
n_frames, n_tracks, n_nodes, xy_score = trx.shape
assert xy_score == 3
See also: Labels.numpy
Read video data¶
import sleap_io as sio
video = sio.load_video("test.mp4")
n_frames, height, width, channels = video.shape
frame = video[0]
height, width, channels = frame.shape
See also: sio.load_video
and Video
Create labels from raw data¶
import sleap_io as sio
import numpy as np
# Create skeleton.
skeleton = sio.Skeleton(
nodes=["head", "thorax", "abdomen"],
edges=[("head", "thorax"), ("thorax", "abdomen")]
)
# Create video.
video = sio.load_video("test.mp4")
# Create instance.
instance = sio.Instance.from_numpy(
points=np.array([
[10.2, 20.4],
[5.8, 15.1],
[0.3, 10.6],
]),
skeleton=skeleton
)
# Create labeled frame.
lf = sio.LabeledFrame(video=video, frame_idx=0, instances=[instance])
# Create labels.
labels = sio.Labels(videos=[video], skeletons=[skeleton], labeled_frames=[lf])
# Save.
labels.save("labels.slp")
See also: Model, Labels
,
LabeledFrame
,
Instance
,
PredictedInstance
,
Skeleton
, Video
, Track
, SuggestionFrame
Fix video paths¶
import sleap_io as sio
# Load labels without trying to open the video files.
labels = sio.load_file("labels.v001.slp", open_videos=False)
# Fix paths using prefix replacement.
labels.replace_filenames(prefix_map={
"D:/data/sleap_projects": "/home/user/sleap_projects",
"C:/Users/sleaper/Desktop/test": "/home/user/sleap_projects",
})
# Save labels with updated paths.
labels.save("labels.v002.slp")
See also: Labels.replace_filenames
Save labels with embedded images¶
import sleap_io as sio
# Load source labels.
labels = sio.load_file("labels.v001.slp")
# Save with embedded images for frames with user labeled data and suggested frames.
labels.save("labels.v001.pkg.slp", embed="user+suggestions")
See also: Labels.save
Make training/validation/test splits¶
import sleap_io as sio
# Load source labels.
labels = sio.load_file("labels.v001.slp")
# Make splits and export with embedded images.
labels.make_training_splits(n_train=0.8, n_val=0.1, n_test=0.1, save_dir="split1", seed=42)
# Splits will be saved as self-contained SLP package files with images and labels.
labels_train = sio.load_file("split1/train.pkg.slp")
labels_val = sio.load_file("split1/val.pkg.slp")
labels_test = sio.load_file("split1/test.pkg.slp")
See also: Labels.make_training_splits
Reencode video¶
Some video formats are not readily seekable at frame-level accuracy. By reencoding them with the default settings in our video writer, they will be reliably seekable with minimal loss of quality and can be achieved in a single line:
See also: save_video
Trim labels and video¶
It can be sometimes be useful to pull out a short clip of frames, either for sharing or for generating data on only a subset of the video. We can do this with the following recipe:
import sleap_io as sio
# Load existing data.
labels = sio.load_file("labels.slp")
# Create a new labels file with data from frames 1000-2000 in video 0.
# Note: a new video will be saved with filename "clip.mp4" and frame indices adjusted in
# the labels.
clip = labels.trim("clip.slp", list(range(1_000, 2_000)), video=0)
See also: Labels.trim
Replace skeleton¶
Skeleton
objects hold metadata about the keypoints,
their ordering, names and connections. When converting between different annotation
formats, it can be useful to change skeletons while retaining as much information as
possible. We can do this as follows:
import sleap_io as sio
# Load existing labels with skeleton with nodes: "head", "trunk", "tti"
labels = sio.load_file("labels.slp")
# Create a new skeleton with different nodes.
new_skeleton = sio.Skeleton(["HEAD", "CENTROID", "TAIL_BASE" "TAIL_TIP"])
# Replace the skeleton with correspondences where possible.
labels.replace_skeleton(
new_skeleton,
node_map={
"head": "HEAD",
"trunk": "CENTROID",
"tti": "TAIL_BASE"
}
)
# Save with the new skeleton format.
labels.save("labels_with_new_skeleton.slp")
See also: Labels.replace_skeleton