Skip to content

slp

sleap_io.io.slp

This module handles direct I/O operations for working with .slp files.

Classes:

Name Description
InstanceType

Enumeration of instance types to integers.

Functions:

Name Description
embed_frames

Embed frames in a SLEAP labels file.

embed_video

Embed frames of a video in a SLEAP labels file.

embed_videos

Embed videos in a SLEAP labels file.

make_video

Create a Video object from a JSON dictionary.

read_instances

Read Instance dataset in a SLEAP labels file.

read_labels

Read a SLEAP labels file.

read_metadata

Read metadata from a SLEAP labels file.

read_points

Read Point dataset from a SLEAP labels file.

read_pred_points

Read PredictedPoint dataset from a SLEAP labels file.

read_skeletons

Read Skeleton dataset from a SLEAP labels file.

read_suggestions

Read SuggestionFrame dataset in a SLEAP labels file.

read_tracks

Read Track dataset in a SLEAP labels file.

read_videos

Read Video dataset in a SLEAP labels file.

sanitize_filename

Sanitize a filename to a canonical posix-compatible format.

serialize_skeletons

Serialize a list of Skeleton objects to JSON-compatible dicts.

video_to_dict

Convert a Video object to a JSON-compatible dictionary.

write_labels

Write a SLEAP labels file.

write_lfs

Write labeled frames, instances and points to a SLEAP labels file.

write_metadata

Write metadata to a SLEAP labels file.

write_suggestions

Write track metadata to a SLEAP labels file.

write_tracks

Write track metadata to a SLEAP labels file.

write_videos

Write video metadata to a SLEAP labels file.

InstanceType

Bases: IntEnum

Enumeration of instance types to integers.

Source code in sleap_io/io/slp.py
class InstanceType(IntEnum):
    """Enumeration of instance types to integers."""

    USER = 0
    PREDICTED = 1

embed_frames(labels_path, labels, embed, image_format='png')

Embed frames in a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required
labels Labels

A Labels object to embed in the labels file.

required
embed list[tuple[Video, int]]

A list of tuples of (video, frame_idx) specifying the frames to embed.

required
image_format str

The image format to use for embedding. Valid formats are "png" (the default), "jpg" or "hdf5".

'png'
Notes

This function will embed the frames in the labels file and update the Videos and Labels objects in place.

Source code in sleap_io/io/slp.py
def embed_frames(
    labels_path: str,
    labels: Labels,
    embed: list[tuple[Video, int]],
    image_format: str = "png",
):
    """Embed frames in a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file.
        labels: A `Labels` object to embed in the labels file.
        embed: A list of tuples of `(video, frame_idx)` specifying the frames to embed.
        image_format: The image format to use for embedding. Valid formats are "png"
            (the default), "jpg" or "hdf5".

    Notes:
        This function will embed the frames in the labels file and update the `Videos`
        and `Labels` objects in place.
    """
    to_embed_by_video = {}
    for video, frame_idx in embed:
        if video not in to_embed_by_video:
            to_embed_by_video[video] = []
        to_embed_by_video[video].append(frame_idx)

    for video in to_embed_by_video:
        to_embed_by_video[video] = np.unique(to_embed_by_video[video]).tolist()

    replaced_videos = {}
    for video, frame_inds in to_embed_by_video.items():
        video_ind = labels.videos.index(video)
        embedded_video = embed_video(
            labels_path,
            video,
            group=f"video{video_ind}",
            frame_inds=frame_inds,
            image_format=image_format,
        )

        labels.videos[video_ind] = embedded_video
        replaced_videos[video] = embedded_video

    if len(replaced_videos) > 0:
        labels.replace_videos(video_map=replaced_videos)

embed_video(labels_path, video, group, frame_inds, image_format='png', fixed_length=True)

Embed frames of a video in a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required
video Video

A Video object to embed in the labels file.

required
group str

The name of the group to store the embedded video in. Image data will be stored in a dataset named {group}/video. Frame indices will be stored in a data set named {group}/frame_numbers.

required
frame_inds list[int]

A list of frame indices to embed.

required
image_format str

The image format to use for embedding. Valid formats are "png" (the default), "jpg" or "hdf5".

'png'
fixed_length bool

If True (the default), the embedded images will be padded to the length of the largest image. If False, the images will be stored as variable length, which is smaller but may not be supported by all readers.

True

Returns:

Type Description
Video

An embedded Video object.

If the video is already embedded, the original video will be returned. If not, a new Video object will be created with the embedded data.

Source code in sleap_io/io/slp.py
def embed_video(
    labels_path: str,
    video: Video,
    group: str,
    frame_inds: list[int],
    image_format: str = "png",
    fixed_length: bool = True,
) -> Video:
    """Embed frames of a video in a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file.
        video: A `Video` object to embed in the labels file.
        group: The name of the group to store the embedded video in. Image data will be
            stored in a dataset named `{group}/video`. Frame indices will be stored
            in a data set named `{group}/frame_numbers`.
        frame_inds: A list of frame indices to embed.
        image_format: The image format to use for embedding. Valid formats are "png"
            (the default), "jpg" or "hdf5".
        fixed_length: If `True` (the default), the embedded images will be padded to the
            length of the largest image. If `False`, the images will be stored as
            variable length, which is smaller but may not be supported by all readers.

    Returns:
        An embedded `Video` object.

        If the video is already embedded, the original video will be returned. If not,
        a new `Video` object will be created with the embedded data.
    """
    # Load the image data and optionally encode it.
    imgs_data = []
    for frame_idx in frame_inds:
        frame = video[frame_idx]

        if image_format == "hdf5":
            img_data = frame
        else:
            if "cv2" in sys.modules:
                img_data = np.squeeze(
                    cv2.imencode("." + image_format, frame)[1]
                ).astype("int8")
            else:
                if frame.shape[-1] == 1:
                    frame = frame.squeeze(axis=-1)
                img_data = np.frombuffer(
                    iio.imwrite("<bytes>", frame, extension="." + image_format),
                    dtype="int8",
                )

        imgs_data.append(img_data)

    # Write the image data to the labels file.
    with h5py.File(labels_path, "a") as f:
        if image_format == "hdf5":
            f.create_dataset(
                f"{group}/video", data=imgs_data, compression="gzip", chunks=True
            )
        else:
            if fixed_length:
                ds = f.create_dataset(
                    f"{group}/video",
                    shape=(len(imgs_data), max(len(img) for img in imgs_data)),
                    dtype="int8",
                    compression="gzip",
                )
                for i, img in enumerate(imgs_data):
                    ds[i, : len(img)] = img
            else:
                ds = f.create_dataset(
                    f"{group}/video",
                    shape=(len(imgs_data),),
                    dtype=h5py.special_dtype(vlen=np.dtype("int8")),
                )
                for i, img in enumerate(imgs_data):
                    ds[i] = img

        # Store metadata.
        ds.attrs["format"] = image_format
        video_shape = video.shape
        (
            ds.attrs["frames"],
            ds.attrs["height"],
            ds.attrs["width"],
            ds.attrs["channels"],
        ) = video_shape

        # Store frame indices.
        f.create_dataset(f"{group}/frame_numbers", data=frame_inds)

        # Store source video.
        if video.source_video is not None:
            # If this is already an embedded dataset, retain the previous source video.
            source_video = video.source_video
        else:
            source_video = video

        # Create a new video object with the embedded data.
        embedded_video = Video(
            filename=labels_path,
            backend=VideoBackend.from_filename(
                labels_path,
                dataset=f"{group}/video",
                grayscale=video.grayscale,
                keep_open=False,
            ),
            source_video=source_video,
        )

        grp = f.require_group(f"{group}/source_video")
        grp.attrs["json"] = json.dumps(
            video_to_dict(source_video), separators=(",", ":")
        )

    return embedded_video

embed_videos(labels_path, labels, embed)

Embed videos in a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file to save.

required
labels Labels

A Labels object to save.

required
embed bool | str | list[tuple[Video, int]]

Frames to embed in the saved labels file. One of None, True, "all", "user", "suggestions", "user+suggestions", "source" or list of tuples of (video, frame_idx).

If None is specified (the default) and the labels contains embedded frames, those embedded frames will be re-saved to the new file.

If True or "all", all labeled frames and suggested frames will be embedded.

If "source" is specified, no images will be embedded and the source video will be restored if available.

This argument is only valid for the SLP backend.

required
Source code in sleap_io/io/slp.py
def embed_videos(
    labels_path: str, labels: Labels, embed: bool | str | list[tuple[Video, int]]
):
    """Embed videos in a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file to save.
        labels: A `Labels` object to save.
        embed: Frames to embed in the saved labels file. One of `None`, `True`,
            `"all"`, `"user"`, `"suggestions"`, `"user+suggestions"`, `"source"` or list
            of tuples of `(video, frame_idx)`.

            If `None` is specified (the default) and the labels contains embedded
            frames, those embedded frames will be re-saved to the new file.

            If `True` or `"all"`, all labeled frames and suggested frames will be
            embedded.

            If `"source"` is specified, no images will be embedded and the source video
            will be restored if available.

            This argument is only valid for the SLP backend.
    """
    if embed is True:
        embed = "all"
    if embed == "user":
        embed = [(lf.video, lf.frame_idx) for lf in labels.user_labeled_frames]
    elif embed == "suggestions":
        embed = [(sf.video, sf.frame_idx) for sf in labels.suggestions]
    elif embed == "user+suggestions":
        embed = [(lf.video, lf.frame_idx) for lf in labels.user_labeled_frames]
        embed += [(sf.video, sf.frame_idx) for sf in labels.suggestions]
    elif embed == "all":
        embed = [(lf.video, lf.frame_idx) for lf in labels]
        embed += [(sf.video, sf.frame_idx) for sf in labels.suggestions]
    elif embed == "source":
        embed = []
    elif isinstance(embed, list):
        embed = embed
    else:
        raise ValueError(f"Invalid value for embed: {embed}")

    embed_frames(labels_path, labels, embed)

make_video(labels_path, video_json, open_backend=True)

Create a Video object from a JSON dictionary.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required
video_json dict

A dictionary containing the video metadata.

required
open_backend bool

If True (the default), attempt to open the video backend for I/O. If False, the backend will not be opened (useful for reading metadata when the video files are not available).

True
Source code in sleap_io/io/slp.py
def make_video(
    labels_path: str,
    video_json: dict,
    open_backend: bool = True,
) -> Video:
    """Create a `Video` object from a JSON dictionary.

    Args:
        labels_path: A string path to the SLEAP labels file.
        video_json: A dictionary containing the video metadata.
        open_backend: If `True` (the default), attempt to open the video backend for
            I/O. If `False`, the backend will not be opened (useful for reading metadata
            when the video files are not available).
    """
    backend_metadata = video_json["backend"]
    video_path = backend_metadata["filename"]

    # Marker for embedded videos.
    source_video = None
    is_embedded = False
    if video_path == ".":
        video_path = labels_path
        is_embedded = True

    # Basic path resolution.
    video_path = Path(sanitize_filename(video_path))

    if is_embedded:
        # Try to recover the source video.
        with h5py.File(labels_path, "r") as f:
            dataset = backend_metadata["dataset"]
            if dataset.endswith("/video"):
                dataset = dataset[:-6]
            if dataset in f:
                source_video_json = json.loads(
                    f[f"{dataset}/source_video"].attrs["json"]
                )
                source_video = make_video(
                    labels_path,
                    source_video_json,
                    open_backend=open_backend,
                )

    backend = None
    if open_backend:
        try:
            if not is_file_accessible(video_path):
                # Check for the same filename in the same directory as the labels file.
                candidate_video_path = Path(labels_path).parent / video_path.name
                if is_file_accessible(candidate_video_path):
                    video_path = candidate_video_path
                else:
                    # TODO (TP): Expand capabilities of path resolution to support more
                    # complex path finding strategies.
                    pass
        except (OSError, PermissionError, FileNotFoundError):
            pass

        # Convert video path to string.
        video_path = video_path.as_posix()

        if "filenames" in backend_metadata:
            # This is an ImageVideo.
            # TODO: Path resolution.
            video_path = backend_metadata["filenames"]
            video_path = [Path(sanitize_filename(p)) for p in video_path]

        try:
            grayscale = None
            if "grayscale" in backend_metadata:
                grayscale = backend_metadata["grayscale"]
            elif "shape" in backend_metadata:
                grayscale = backend_metadata["shape"][-1] == 1
            backend = VideoBackend.from_filename(
                video_path,
                dataset=backend_metadata.get("dataset", None),
                grayscale=grayscale,
                input_format=backend_metadata.get("input_format", None),
            )
        except Exception:
            backend = None

    return Video(
        filename=video_path,
        backend=backend,
        backend_metadata=backend_metadata,
        source_video=source_video,
        open_backend=open_backend,
    )

read_instances(labels_path, skeletons, tracks, points, pred_points, format_id)

Read Instance dataset in a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required
skeletons list[Skeleton]

A list of Skeleton objects (see read_skeletons).

required
tracks list[Track]

A list of Track objects (see read_tracks).

required
points list[Point]

A list of Point objects (see read_points).

required
pred_points list[PredictedPoint]

A list of PredictedPoint objects (see read_pred_points).

required
format_id float

The format version identifier used to specify the format of the input file.

required

Returns:

Type Description
list[Union[Instance, PredictedInstance]]

A list of Instance and/or PredictedInstance objects.

Source code in sleap_io/io/slp.py
def read_instances(
    labels_path: str,
    skeletons: list[Skeleton],
    tracks: list[Track],
    points: list[Point],
    pred_points: list[PredictedPoint],
    format_id: float,
) -> list[Union[Instance, PredictedInstance]]:
    """Read `Instance` dataset in a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file.
        skeletons: A list of `Skeleton` objects (see `read_skeletons`).
        tracks: A list of `Track` objects (see `read_tracks`).
        points: A list of `Point` objects (see `read_points`).
        pred_points: A list of `PredictedPoint` objects (see `read_pred_points`).
        format_id: The format version identifier used to specify the format of the input
            file.

    Returns:
        A list of `Instance` and/or `PredictedInstance` objects.
    """
    instances_data = read_hdf5_dataset(labels_path, "instances")

    instances = {}
    from_predicted_pairs = []
    for instance_data in instances_data:
        if format_id < 1.2:
            (
                instance_id,
                instance_type,
                frame_id,
                skeleton_id,
                track_id,
                from_predicted,
                instance_score,
                point_id_start,
                point_id_end,
            ) = instance_data
            tracking_score = np.zeros_like(instance_score)
        else:
            (
                instance_id,
                instance_type,
                frame_id,
                skeleton_id,
                track_id,
                from_predicted,
                instance_score,
                point_id_start,
                point_id_end,
                tracking_score,
            ) = instance_data

        if instance_type == InstanceType.USER:
            instances[instance_id] = Instance(
                points=points[point_id_start:point_id_end],  # type: ignore[arg-type]
                skeleton=skeletons[skeleton_id],
                track=tracks[track_id] if track_id >= 0 else None,
            )
            if from_predicted >= 0:
                from_predicted_pairs.append((instance_id, from_predicted))
        elif instance_type == InstanceType.PREDICTED:
            instances[instance_id] = PredictedInstance(
                points=pred_points[point_id_start:point_id_end],  # type: ignore[arg-type]
                skeleton=skeletons[skeleton_id],
                track=tracks[track_id] if track_id >= 0 else None,
                score=instance_score,
                tracking_score=tracking_score,
            )

    # Link instances based on from_predicted field.
    for instance_id, from_predicted in from_predicted_pairs:
        instances[instance_id].from_predicted = instances[from_predicted]

    # Convert instances back to list.
    instances = list(instances.values())

    return instances

read_labels(labels_path, open_videos=True)

Read a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required
open_videos bool

If True (the default), attempt to open the video backend for I/O. If False, the backend will not be opened (useful for reading metadata when the video files are not available).

True

Returns:

Type Description
Labels

The processed Labels object.

Source code in sleap_io/io/slp.py
def read_labels(labels_path: str, open_videos: bool = True) -> Labels:
    """Read a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file.
        open_videos: If `True` (the default), attempt to open the video backend for
            I/O. If `False`, the backend will not be opened (useful for reading metadata
            when the video files are not available).

    Returns:
        The processed `Labels` object.
    """
    tracks = read_tracks(labels_path)
    videos = read_videos(labels_path, open_backend=open_videos)
    skeletons = read_skeletons(labels_path)
    points = read_points(labels_path)
    pred_points = read_pred_points(labels_path)
    format_id = read_hdf5_attrs(labels_path, "metadata", "format_id")
    instances = read_instances(
        labels_path, skeletons, tracks, points, pred_points, format_id
    )
    suggestions = read_suggestions(labels_path, videos)
    metadata = read_metadata(labels_path)
    provenance = metadata.get("provenance", dict())

    frames = read_hdf5_dataset(labels_path, "frames")
    labeled_frames = []
    for _, video_id, frame_idx, instance_id_start, instance_id_end in frames:
        labeled_frames.append(
            LabeledFrame(
                video=videos[video_id],
                frame_idx=int(frame_idx),
                instances=instances[instance_id_start:instance_id_end],
            )
        )

    labels = Labels(
        labeled_frames=labeled_frames,
        videos=videos,
        skeletons=skeletons,
        tracks=tracks,
        suggestions=suggestions,
        provenance=provenance,
    )
    labels.provenance["filename"] = labels_path

    return labels

read_metadata(labels_path)

Read metadata from a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required

Returns:

Type Description
dict

A dict containing the metadata from a SLEAP labels file.

Source code in sleap_io/io/slp.py
def read_metadata(labels_path: str) -> dict:
    """Read metadata from a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file.

    Returns:
        A dict containing the metadata from a SLEAP labels file.
    """
    md = read_hdf5_attrs(labels_path, "metadata", "json")
    return json.loads(md.decode())

read_points(labels_path)

Read Point dataset from a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required

Returns:

Type Description
list[Point]

A list of Point objects.

Source code in sleap_io/io/slp.py
def read_points(labels_path: str) -> list[Point]:
    """Read `Point` dataset from a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file.

    Returns:
        A list of `Point` objects.
    """
    pts = read_hdf5_dataset(labels_path, "points")
    return [
        Point(x=x, y=y, visible=visible, complete=complete)
        for x, y, visible, complete in pts
    ]

read_pred_points(labels_path)

Read PredictedPoint dataset from a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required

Returns:

Type Description
list[PredictedPoint]

A list of PredictedPoint objects.

Source code in sleap_io/io/slp.py
def read_pred_points(labels_path: str) -> list[PredictedPoint]:
    """Read `PredictedPoint` dataset from a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file.

    Returns:
        A list of `PredictedPoint` objects.
    """
    pred_pts = read_hdf5_dataset(labels_path, "pred_points")
    return [
        PredictedPoint(x=x, y=y, visible=visible, complete=complete, score=score)
        for x, y, visible, complete, score in pred_pts
    ]

read_skeletons(labels_path)

Read Skeleton dataset from a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string that contains the path to the labels file.

required

Returns:

Type Description
list[Skeleton]

A list of Skeleton objects.

Source code in sleap_io/io/slp.py
def read_skeletons(labels_path: str) -> list[Skeleton]:
    """Read `Skeleton` dataset from a SLEAP labels file.

    Args:
        labels_path: A string that contains the path to the labels file.

    Returns:
        A list of `Skeleton` objects.
    """
    metadata = read_metadata(labels_path)

    # Get node names. This is a superset of all nodes across all skeletons. Note that
    # node ordering is specific to each skeleton, so we'll need to fix this afterwards.
    node_names = [x["name"] for x in metadata["nodes"]]

    skeleton_objects = []
    for skel in metadata["skeletons"]:
        # Parse out the cattr-based serialization stuff from the skeleton links.
        edge_inds, symmetry_inds = [], []
        for link in skel["links"]:
            if "py/reduce" in link["type"]:
                edge_type = link["type"]["py/reduce"][1]["py/tuple"][0]
            else:
                edge_type = link["type"]["py/id"]

            if edge_type == 1:  # 1 -> real edge, 2 -> symmetry edge
                edge_inds.append((link["source"], link["target"]))

            elif edge_type == 2:
                symmetry_inds.append((link["source"], link["target"]))

        # Re-index correctly.
        skeleton_node_inds = [node["id"] for node in skel["nodes"]]
        sorted_node_names = [node_names[i] for i in skeleton_node_inds]

        # Create nodes.
        nodes = []
        for name in sorted_node_names:
            nodes.append(Node(name=name))

        # Create edges.
        edge_inds = [
            (skeleton_node_inds.index(s), skeleton_node_inds.index(d))
            for s, d in edge_inds
        ]
        edges = []
        for edge in edge_inds:
            edges.append(Edge(source=nodes[edge[0]], destination=nodes[edge[1]]))

        # Create symmetries.
        symmetry_inds = [
            (skeleton_node_inds.index(s), skeleton_node_inds.index(d))
            for s, d in symmetry_inds
        ]
        symmetries = []
        for symmetry in symmetry_inds:
            symmetries.append(Symmetry([nodes[symmetry[0]], nodes[symmetry[1]]]))

        # Create the full skeleton.
        skel = Skeleton(
            nodes=nodes, edges=edges, symmetries=symmetries, name=skel["graph"]["name"]
        )
        skeleton_objects.append(skel)
    return skeleton_objects

read_suggestions(labels_path, videos)

Read SuggestionFrame dataset in a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required
videos list[Video]

A list of Video objects.

required

Returns:

Type Description
list[SuggestionFrame]

A list of SuggestionFrame objects.

Source code in sleap_io/io/slp.py
def read_suggestions(labels_path: str, videos: list[Video]) -> list[SuggestionFrame]:
    """Read `SuggestionFrame` dataset in a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file.
        videos: A list of `Video` objects.

    Returns:
        A list of `SuggestionFrame` objects.
    """
    try:
        suggestions = read_hdf5_dataset(labels_path, "suggestions_json")
    except KeyError:
        return []
    suggestions = [json.loads(x) for x in suggestions]
    suggestions_objects = []
    for suggestion in suggestions:
        suggestions_objects.append(
            SuggestionFrame(
                video=videos[int(suggestion["video"])],
                frame_idx=suggestion["frame_idx"],
            )
        )
    return suggestions_objects

read_tracks(labels_path)

Read Track dataset in a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required

Returns:

Type Description
list[Track]

A list of Track objects.

Source code in sleap_io/io/slp.py
def read_tracks(labels_path: str) -> list[Track]:
    """Read `Track` dataset in a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file.

    Returns:
        A list of `Track` objects.
    """
    tracks = [json.loads(x) for x in read_hdf5_dataset(labels_path, "tracks_json")]
    track_objects = []
    for track in tracks:
        track_objects.append(Track(name=track[1]))
    return track_objects

read_videos(labels_path, open_backend=True)

Read Video dataset in a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required
open_backend bool

If True (the default), attempt to open the video backend for I/O. If False, the backend will not be opened (useful for reading metadata when the video files are not available).

True

Returns:

Type Description
list[Video]

A list of Video objects.

Source code in sleap_io/io/slp.py
def read_videos(labels_path: str, open_backend: bool = True) -> list[Video]:
    """Read `Video` dataset in a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file.
        open_backend: If `True` (the default), attempt to open the video backend for
            I/O. If `False`, the backend will not be opened (useful for reading metadata
            when the video files are not available).

    Returns:
        A list of `Video` objects.
    """
    videos = []
    videos_metadata = read_hdf5_dataset(labels_path, "videos_json")
    for video_data in videos_metadata:
        video_json = json.loads(video_data)
        video = make_video(labels_path, video_json, open_backend=open_backend)
        videos.append(video)
    return videos

sanitize_filename(filename)

Sanitize a filename to a canonical posix-compatible format.

Parameters:

Name Type Description Default
filename str | Path | list[str] | list[Path]

A string or Path object or list of either to sanitize.

required

Returns:

Type Description
str | list[str]

A sanitized filename as a string (or list of strings if a list was provided) with forward slashes and posix-formatted.

Source code in sleap_io/io/slp.py
def sanitize_filename(
    filename: str | Path | list[str] | list[Path],
) -> str | list[str]:
    """Sanitize a filename to a canonical posix-compatible format.

    Args:
        filename: A string or `Path` object or list of either to sanitize.

    Returns:
        A sanitized filename as a string (or list of strings if a list was provided)
        with forward slashes and posix-formatted.
    """
    if isinstance(filename, list):
        return [sanitize_filename(f) for f in filename]
    return Path(filename).as_posix().replace("\\", "/")

serialize_skeletons(skeletons)

Serialize a list of Skeleton objects to JSON-compatible dicts.

Parameters:

Name Type Description Default
skeletons list[Skeleton]

A list of Skeleton objects.

required

Returns:

Type Description
tuple[list[dict], list[dict]]

A tuple of nodes_dicts, skeletons_dicts.

nodes_dicts is a list of dicts containing the nodes in all the skeletons.

skeletons_dicts is a list of dicts containing the skeletons.

Notes

This function attempts to replicate the serialization of skeletons in legacy SLEAP which relies on a combination of networkx's graph serialization and our own metadata used to store nodes and edges independent of the graph structure.

However, because sleap-io does not currently load in the legacy metadata, this function will not produce byte-level compatible serialization with legacy formats, even though the ordering and all attributes of nodes and edges should match up.

Source code in sleap_io/io/slp.py
def serialize_skeletons(skeletons: list[Skeleton]) -> tuple[list[dict], list[dict]]:
    """Serialize a list of `Skeleton` objects to JSON-compatible dicts.

    Args:
        skeletons: A list of `Skeleton` objects.

    Returns:
        A tuple of `nodes_dicts, skeletons_dicts`.

        `nodes_dicts` is a list of dicts containing the nodes in all the skeletons.

        `skeletons_dicts` is a list of dicts containing the skeletons.

    Notes:
        This function attempts to replicate the serialization of skeletons in legacy
        SLEAP which relies on a combination of networkx's graph serialization and our
        own metadata used to store nodes and edges independent of the graph structure.

        However, because sleap-io does not currently load in the legacy metadata, this
        function will not produce byte-level compatible serialization with legacy
        formats, even though the ordering and all attributes of nodes and edges should
        match up.
    """
    # Create global list of nodes with all nodes from all skeletons.
    nodes_dicts = []
    node_to_id = {}
    for skeleton in skeletons:
        for node in skeleton.nodes:
            if node not in node_to_id:
                # Note: This ID is not the same as the node index in the skeleton in
                # legacy SLEAP, but we do not retain this information in the labels, so
                # IDs will be different.
                #
                # The weight is also kept fixed here, but technically this is not
                # modified or used in legacy SLEAP either.
                #
                # TODO: Store legacy metadata in labels to get byte-level compatibility?
                node_to_id[node] = len(node_to_id)
                nodes_dicts.append({"name": node.name, "weight": 1.0})

    skeletons_dicts = []
    for skeleton in skeletons:
        # Build links dicts for normal edges.
        edges_dicts = []
        for edge_ind, edge in enumerate(skeleton.edges):
            if edge_ind == 0:
                edge_type = {
                    "py/reduce": [
                        {"py/type": "sleap.skeleton.EdgeType"},
                        {"py/tuple": [1]},  # 1 = real edge, 2 = symmetry edge
                    ]
                }
            else:
                edge_type = {"py/id": 1}

            edges_dicts.append(
                {
                    # Note: Insert idx is not the same as the edge index in the skeleton
                    # in legacy SLEAP.
                    "edge_insert_idx": edge_ind,
                    "key": 0,  # Always 0.
                    "source": node_to_id[edge.source],
                    "target": node_to_id[edge.destination],
                    "type": edge_type,
                }
            )

        # Build links dicts for symmetry edges.
        for symmetry_ind, symmetry in enumerate(skeleton.symmetries):
            if symmetry_ind == 0:
                edge_type = {
                    "py/reduce": [
                        {"py/type": "sleap.skeleton.EdgeType"},
                        {"py/tuple": [2]},  # 1 = real edge, 2 = symmetry edge
                    ]
                }
            else:
                edge_type = {"py/id": 2}

            src, dst = tuple(symmetry.nodes)
            edges_dicts.append(
                {
                    "key": 0,
                    "source": node_to_id[src],
                    "target": node_to_id[dst],
                    "type": edge_type,
                }
            )

        # Create skeleton dict.
        skeletons_dicts.append(
            {
                "directed": True,
                "graph": {
                    "name": skeleton.name,
                    "num_edges_inserted": len(skeleton.edges),
                },
                "links": edges_dicts,
                "multigraph": True,
                # In the order in Skeleton.nodes and must match up with nodes_dicts.
                "nodes": [{"id": node_to_id[node]} for node in skeleton.nodes],
            }
        )

    return skeletons_dicts, nodes_dicts

video_to_dict(video)

Convert a Video object to a JSON-compatible dictionary.

Parameters:

Name Type Description Default
video Video

A Video object to convert.

required

Returns:

Type Description
dict

A dictionary containing the video metadata.

Source code in sleap_io/io/slp.py
def video_to_dict(video: Video) -> dict:
    """Convert a `Video` object to a JSON-compatible dictionary.

    Args:
        video: A `Video` object to convert.

    Returns:
        A dictionary containing the video metadata.
    """
    video_filename = sanitize_filename(video.filename)
    if video.backend is None:
        return {"filename": video_filename, "backend": video.backend_metadata}

    if type(video.backend) == MediaVideo:
        return {
            "filename": video_filename,
            "backend": {
                "type": "MediaVideo",
                "shape": video.shape,
                "filename": video_filename,
                "grayscale": video.grayscale,
                "bgr": True,
                "dataset": "",
                "input_format": "",
            },
        }

    elif type(video.backend) == HDF5Video:
        return {
            "filename": video_filename,
            "backend": {
                "type": "HDF5Video",
                "shape": video.shape,
                "filename": (
                    "." if video.backend.has_embedded_images else video_filename
                ),
                "dataset": video.backend.dataset,
                "input_format": video.backend.input_format,
                "convert_range": False,
                "has_embedded_images": video.backend.has_embedded_images,
                "grayscale": video.grayscale,
            },
        }

    elif type(video.backend) == ImageVideo:
        return {
            "filename": video_filename,
            "backend": {
                "type": "ImageVideo",
                "shape": video.shape,
                "filename": sanitize_filename(video.backend.filename[0]),
                "filenames": sanitize_filename(video.backend.filename),
                "dataset": video.backend_metadata.get("dataset", None),
                "grayscale": video.grayscale,
                "input_format": video.backend_metadata.get("input_format", None),
            },
        }

write_labels(labels_path, labels, embed=None)

Write a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file to save.

required
labels Labels

A Labels object to save.

required
embed bool | str | list[tuple[Video, int]] | None

Frames to embed in the saved labels file. One of None, True, "all", "user", "suggestions", "user+suggestions", "source" or list of tuples of (video, frame_idx).

If None is specified (the default) and the labels contains embedded frames, those embedded frames will be re-saved to the new file.

If True or "all", all labeled frames and suggested frames will be embedded.

If "source" is specified, no images will be embedded and the source video will be restored if available.

This argument is only valid for the SLP backend.

None
Source code in sleap_io/io/slp.py
def write_labels(
    labels_path: str,
    labels: Labels,
    embed: bool | str | list[tuple[Video, int]] | None = None,
):
    """Write a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file to save.
        labels: A `Labels` object to save.
        embed: Frames to embed in the saved labels file. One of `None`, `True`,
            `"all"`, `"user"`, `"suggestions"`, `"user+suggestions"`, `"source"` or list
            of tuples of `(video, frame_idx)`.

            If `None` is specified (the default) and the labels contains embedded
            frames, those embedded frames will be re-saved to the new file.

            If `True` or `"all"`, all labeled frames and suggested frames will be
            embedded.

            If `"source"` is specified, no images will be embedded and the source video
            will be restored if available.

            This argument is only valid for the SLP backend.
    """
    if Path(labels_path).exists():
        Path(labels_path).unlink()

    if embed:
        embed_videos(labels_path, labels, embed)
    write_videos(labels_path, labels.videos, restore_source=(embed == "source"))
    write_tracks(labels_path, labels.tracks)
    write_suggestions(labels_path, labels.suggestions, labels.videos)
    write_metadata(labels_path, labels)
    write_lfs(labels_path, labels)

write_lfs(labels_path, labels)

Write labeled frames, instances and points to a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required
labels Labels

A Labels object to store the metadata for.

required
Source code in sleap_io/io/slp.py
def write_lfs(labels_path: str, labels: Labels):
    """Write labeled frames, instances and points to a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file.
        labels: A `Labels` object to store the metadata for.
    """
    # We store the data in structured arrays for performance, so we first define the
    # dtype fields.
    instance_dtype = np.dtype(
        [
            ("instance_id", "i8"),
            ("instance_type", "u1"),
            ("frame_id", "u8"),
            ("skeleton", "u4"),
            ("track", "i4"),
            ("from_predicted", "i8"),
            ("score", "f4"),
            ("point_id_start", "u8"),
            ("point_id_end", "u8"),
            ("tracking_score", "f4"),  # FORMAT_ID >= 1.2
        ]
    )
    frame_dtype = np.dtype(
        [
            ("frame_id", "u8"),
            ("video", "u4"),
            ("frame_idx", "u8"),
            ("instance_id_start", "u8"),
            ("instance_id_end", "u8"),
        ]
    )
    point_dtype = np.dtype(
        [("x", "f8"), ("y", "f8"), ("visible", "?"), ("complete", "?")]
    )
    predicted_point_dtype = np.dtype(
        [("x", "f8"), ("y", "f8"), ("visible", "?"), ("complete", "?"), ("score", "f8")]
    )

    # Next, we extract the data from the labels object into lists with the same fields.
    frames, instances, points, predicted_points, to_link = [], [], [], [], []
    inst_to_id = {}
    for lf in labels:
        frame_id = len(frames)
        instance_id_start = len(instances)
        for inst in lf:
            instance_id = len(instances)
            inst_to_id[id(inst)] = instance_id
            skeleton_id = labels.skeletons.index(inst.skeleton)
            track = labels.tracks.index(inst.track) if inst.track else -1
            from_predicted = -1
            if inst.from_predicted:
                to_link.append((instance_id, inst.from_predicted))

            if type(inst) == Instance:
                instance_type = InstanceType.USER
                score = np.nan
                tracking_score = np.nan
                point_id_start = len(points)

                for node in inst.skeleton.nodes:
                    pt = inst.points[node]
                    points.append([pt.x, pt.y, pt.visible, pt.complete])

                point_id_end = len(points)

            elif type(inst) == PredictedInstance:
                instance_type = InstanceType.PREDICTED
                score = inst.score
                tracking_score = inst.tracking_score
                point_id_start = len(predicted_points)

                for node in inst.skeleton.nodes:
                    pt = inst.points[node]
                    predicted_points.append(
                        [pt.x, pt.y, pt.visible, pt.complete, pt.score]
                    )

                point_id_end = len(predicted_points)

            else:
                raise ValueError(f"Unknown instance type: {type(inst)}")

            instances.append(
                [
                    instance_id,
                    int(instance_type),
                    frame_id,
                    skeleton_id,
                    track,
                    from_predicted,
                    score,
                    point_id_start,
                    point_id_end,
                    tracking_score,
                ]
            )

        instance_id_end = len(instances)

        frames.append(
            [
                frame_id,
                labels.videos.index(lf.video),
                lf.frame_idx,
                instance_id_start,
                instance_id_end,
            ]
        )

    # Link instances based on from_predicted field.
    for instance_id, from_predicted in to_link:
        # Source instance may be missing if predictions were removed from the labels, in
        # which case, remove the link.
        instances[instance_id][5] = inst_to_id.get(id(from_predicted), -1)

    # Create structured arrays.
    points = np.array([tuple(x) for x in points], dtype=point_dtype)
    predicted_points = np.array(
        [tuple(x) for x in predicted_points], dtype=predicted_point_dtype
    )
    instances = np.array([tuple(x) for x in instances], dtype=instance_dtype)
    frames = np.array([tuple(x) for x in frames], dtype=frame_dtype)

    # Write to file.
    with h5py.File(labels_path, "a") as f:
        f.create_dataset("points", data=points, dtype=points.dtype)
        f.create_dataset(
            "pred_points",
            data=predicted_points,
            dtype=predicted_points.dtype,
        )
        f.create_dataset(
            "instances",
            data=instances,
            dtype=instances.dtype,
        )
        f.create_dataset(
            "frames",
            data=frames,
            dtype=frames.dtype,
        )

write_metadata(labels_path, labels)

Write metadata to a SLEAP labels file.

This function will write the skeletons and provenance for the labels.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required
labels Labels

A Labels object to store the metadata for.

required

See also: serialize_skeletons

Source code in sleap_io/io/slp.py
def write_metadata(labels_path: str, labels: Labels):
    """Write metadata to a SLEAP labels file.

    This function will write the skeletons and provenance for the labels.

    Args:
        labels_path: A string path to the SLEAP labels file.
        labels: A `Labels` object to store the metadata for.

    See also: serialize_skeletons
    """
    skeletons_dicts, nodes_dicts = serialize_skeletons(labels.skeletons)

    md = {
        "version": "2.0.0",
        "skeletons": skeletons_dicts,
        "nodes": nodes_dicts,
        "videos": [],
        "tracks": [],
        "suggestions": [],  # TODO: Handle suggestions metadata.
        "negative_anchors": {},
        "provenance": labels.provenance,
    }

    # Custom encoding.
    for k in md["provenance"]:
        if isinstance(md["provenance"][k], Path):
            # Path -> str
            md["provenance"][k] = md["provenance"][k].as_posix()

    with h5py.File(labels_path, "a") as f:
        grp = f.require_group("metadata")
        grp.attrs["format_id"] = 1.2
        grp.attrs["json"] = np.bytes_(json.dumps(md, separators=(",", ":")))

write_suggestions(labels_path, suggestions, videos)

Write track metadata to a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required
suggestions list[SuggestionFrame]

A list of SuggestionFrame objects to store the metadata for.

required
videos list[Video]

A list of Video objects.

required
Source code in sleap_io/io/slp.py
def write_suggestions(
    labels_path: str, suggestions: list[SuggestionFrame], videos: list[Video]
):
    """Write track metadata to a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file.
        suggestions: A list of `SuggestionFrame` objects to store the metadata for.
        videos: A list of `Video` objects.
    """
    GROUP = 0  # TODO: Handle storing extraneous metadata.
    suggestions_json = []
    for suggestion in suggestions:
        suggestion_dict = {
            "video": str(videos.index(suggestion.video)),
            "frame_idx": suggestion.frame_idx,
            "group": GROUP,
        }
        suggestion_json = np.bytes_(json.dumps(suggestion_dict, separators=(",", ":")))
        suggestions_json.append(suggestion_json)

    with h5py.File(labels_path, "a") as f:
        f.create_dataset("suggestions_json", data=suggestions_json, maxshape=(None,))

write_tracks(labels_path, tracks)

Write track metadata to a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required
tracks list[Track]

A list of Track objects to store the metadata for.

required
Source code in sleap_io/io/slp.py
def write_tracks(labels_path: str, tracks: list[Track]):
    """Write track metadata to a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file.
        tracks: A list of `Track` objects to store the metadata for.
    """
    # TODO: Add support for track metadata like spawned on frame.
    SPAWNED_ON = 0
    tracks_json = [
        np.bytes_(json.dumps([SPAWNED_ON, track.name], separators=(",", ":")))
        for track in tracks
    ]
    with h5py.File(labels_path, "a") as f:
        f.create_dataset("tracks_json", data=tracks_json, maxshape=(None,))

write_videos(labels_path, videos, restore_source=False)

Write video metadata to a SLEAP labels file.

Parameters:

Name Type Description Default
labels_path str

A string path to the SLEAP labels file.

required
videos list[Video]

A list of Video objects to store the metadata for.

required
restore_source bool

If True, restore source videos if available and will not re-embed the embedded images. If False (the default), will re-embed images that were previously embedded.

False
Source code in sleap_io/io/slp.py
def write_videos(labels_path: str, videos: list[Video], restore_source: bool = False):
    """Write video metadata to a SLEAP labels file.

    Args:
        labels_path: A string path to the SLEAP labels file.
        videos: A list of `Video` objects to store the metadata for.
        restore_source: If `True`, restore source videos if available and will not
            re-embed the embedded images. If `False` (the default), will re-embed images
            that were previously embedded.
    """
    video_jsons = []
    for video_ind, video in enumerate(videos):
        if type(video.backend) == HDF5Video and video.backend.has_embedded_images:
            if restore_source:
                video = video.source_video
            else:
                # If the video has embedded images, embed them images again if we haven't
                # already.
                already_embedded = False
                if Path(labels_path).exists():
                    with h5py.File(labels_path, "r") as f:
                        already_embedded = f"video{video_ind}/video" in f

                if not already_embedded:
                    video = embed_video(
                        labels_path,
                        video,
                        group=f"video{video_ind}",
                        frame_inds=video.backend.source_inds,
                        image_format=video.backend.image_format,
                    )

        video_json = video_to_dict(video)

        video_jsons.append(np.bytes_(json.dumps(video_json, separators=(",", ":"))))

    with h5py.File(labels_path, "a") as f:
        f.create_dataset("videos_json", data=video_jsons, maxshape=(None,))