video
sleap_io.model.video
¶
Data model for videos.
The Video
class is a SLEAP data structure that stores information regarding
a video and its components used in SLEAP.
Classes:
Name | Description |
---|---|
Video |
|
Video
¶
Video
class used by sleap to represent videos and data associated with them.
This class is used to store information regarding a video and its components.
It is used to store the video's filename
, shape
, and the video's backend
.
To create a Video
object, use the from_filename
method which will select the
backend appropriately.
Attributes:
Name | Type | Description |
---|---|---|
filename |
str | list[str]
|
The filename(s) of the video. Supported extensions: "mp4", "avi", "mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif", "tiff", "bmp". If the filename is a list, a list of image filenames are expected. If filename is a folder, it will be searched for images. |
backend |
Optional[VideoBackend]
|
An object that implements the basic methods for reading and manipulating frames of a specific video type. |
backend_metadata |
dict[str, any]
|
A dictionary of metadata specific to the backend. This is useful for storing metadata that requires an open backend (e.g., shape information) without having access to the video file itself. |
source_video |
Optional[Video]
|
The source video object if this is a proxy video. This is present when the video contains an embedded subset of frames from another video. |
open_backend |
bool
|
Whether to open the backend when the video is available. If |
Notes
Instances of this class are hashed by identity, not by value. This means that
two Video
instances with the same attributes will NOT be considered equal in a
set or dict.
See also: VideoBackend
Methods:
Name | Description |
---|---|
__attrs_post_init__ |
Post init syntactic sugar. |
__deepcopy__ |
Deep copy the video object. |
__getitem__ |
Return the frames of the video at the given indices. |
__len__ |
Return the length of the video as the number of frames. |
__repr__ |
Informal string representation (for print or format). |
__str__ |
Informal string representation (for print or format). |
close |
Close the video backend. |
exists |
Check if the video file exists and is accessible. |
from_filename |
Create a Video from a filename. |
open |
Open the video backend for reading. |
replace_filename |
Update the filename of the video, optionally opening the backend. |
save |
Save video frames to a new video file. |
Attributes:
Name | Type | Description |
---|---|---|
grayscale |
bool | None
|
Return whether the video is grayscale. |
is_open |
bool
|
Check if the video backend is open. |
shape |
Tuple[int, int, int, int] | None
|
Return the shape of the video as (num_frames, height, width, channels). |
Source code in sleap_io/model/video.py
@attrs.define(eq=False)
class Video:
"""`Video` class used by sleap to represent videos and data associated with them.
This class is used to store information regarding a video and its components.
It is used to store the video's `filename`, `shape`, and the video's `backend`.
To create a `Video` object, use the `from_filename` method which will select the
backend appropriately.
Attributes:
filename: The filename(s) of the video. Supported extensions: "mp4", "avi",
"mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif",
"tiff", "bmp". If the filename is a list, a list of image filenames are
expected. If filename is a folder, it will be searched for images.
backend: An object that implements the basic methods for reading and
manipulating frames of a specific video type.
backend_metadata: A dictionary of metadata specific to the backend. This is
useful for storing metadata that requires an open backend (e.g., shape
information) without having access to the video file itself.
source_video: The source video object if this is a proxy video. This is present
when the video contains an embedded subset of frames from another video.
open_backend: Whether to open the backend when the video is available. If `True`
(the default), the backend will be automatically opened if the video exists.
Set this to `False` when you want to manually open the backend, or when the
you know the video file does not exist and you want to avoid trying to open
the file.
Notes:
Instances of this class are hashed by identity, not by value. This means that
two `Video` instances with the same attributes will NOT be considered equal in a
set or dict.
See also: VideoBackend
"""
filename: str | list[str]
backend: Optional[VideoBackend] = None
backend_metadata: dict[str, any] = attrs.field(factory=dict)
source_video: Optional[Video] = None
open_backend: bool = True
EXTS = MediaVideo.EXTS + HDF5Video.EXTS + ImageVideo.EXTS
def __attrs_post_init__(self):
"""Post init syntactic sugar."""
if self.open_backend and self.backend is None and self.exists():
try:
self.open()
except Exception as e:
# If we can't open the backend, just ignore it for now so we don't
# prevent the user from building the Video object entirely.
pass
def __deepcopy__(self, memo):
"""Deep copy the video object."""
if id(self) in memo:
return memo[id(self)]
reopen = False
if self.is_open:
reopen = True
self.close()
new_video = Video(
filename=self.filename,
backend=None,
backend_metadata=self.backend_metadata,
source_video=self.source_video,
open_backend=self.open_backend,
)
memo[id(self)] = new_video
if reopen:
self.open()
return new_video
@classmethod
def from_filename(
cls,
filename: str | list[str],
dataset: Optional[str] = None,
grayscale: Optional[bool] = None,
keep_open: bool = True,
source_video: Optional[Video] = None,
**kwargs,
) -> VideoBackend:
"""Create a Video from a filename.
Args:
filename: The filename(s) of the video. Supported extensions: "mp4", "avi",
"mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif",
"tiff", "bmp". If the filename is a list, a list of image filenames are
expected. If filename is a folder, it will be searched for images.
dataset: Name of dataset in HDF5 file.
grayscale: Whether to force grayscale. If None, autodetect on first frame
load.
keep_open: Whether to keep the video reader open between calls to read
frames. If False, will close the reader after each call. If True (the
default), it will keep the reader open and cache it for subsequent calls
which may enhance the performance of reading multiple frames.
source_video: The source video object if this is a proxy video. This is
present when the video contains an embedded subset of frames from
another video.
Returns:
Video instance with the appropriate backend instantiated.
"""
return cls(
filename=filename,
backend=VideoBackend.from_filename(
filename,
dataset=dataset,
grayscale=grayscale,
keep_open=keep_open,
**kwargs,
),
source_video=source_video,
)
@property
def shape(self) -> Tuple[int, int, int, int] | None:
"""Return the shape of the video as (num_frames, height, width, channels).
If the video backend is not set or it cannot determine the shape of the video,
this will return None.
"""
return self._get_shape()
def _get_shape(self) -> Tuple[int, int, int, int] | None:
"""Return the shape of the video as (num_frames, height, width, channels).
This suppresses errors related to querying the backend for the video shape, such
as when it has not been set or when the video file is not found.
"""
try:
return self.backend.shape
except:
if "shape" in self.backend_metadata:
return self.backend_metadata["shape"]
return None
@property
def grayscale(self) -> bool | None:
"""Return whether the video is grayscale.
If the video backend is not set or it cannot determine whether the video is
grayscale, this will return None.
"""
shape = self.shape
if shape is not None:
return shape[-1] == 1
else:
grayscale = None
if "grayscale" in self.backend_metadata:
grayscale = self.backend_metadata["grayscale"]
return grayscale
@grayscale.setter
def grayscale(self, value: bool):
"""Set the grayscale value and adjust the backend."""
if self.backend is not None:
self.backend.grayscale = value
self.backend._cached_shape = None
self.backend_metadata["grayscale"] = value
def __len__(self) -> int:
"""Return the length of the video as the number of frames."""
shape = self.shape
return 0 if shape is None else shape[0]
def __repr__(self) -> str:
"""Informal string representation (for print or format)."""
dataset = (
f"dataset={self.backend.dataset}, "
if getattr(self.backend, "dataset", "")
else ""
)
return (
"Video("
f'filename="{self.filename}", '
f"shape={self.shape}, "
f"{dataset}"
f"backend={type(self.backend).__name__}"
")"
)
def __str__(self) -> str:
"""Informal string representation (for print or format)."""
return self.__repr__()
def __getitem__(self, inds: int | list[int] | slice) -> np.ndarray:
"""Return the frames of the video at the given indices.
Args:
inds: Index or list of indices of frames to read.
Returns:
Frame or frames as a numpy array of shape `(height, width, channels)` if a
scalar index is provided, or `(frames, height, width, channels)` if a list
of indices is provided.
See also: VideoBackend.get_frame, VideoBackend.get_frames
"""
if not self.is_open:
if self.open_backend:
self.open()
else:
raise ValueError(
"Video backend is not open. Call video.open() or set "
"video.open_backend to True to do automatically on frame read."
)
return self.backend[inds]
def exists(self, check_all: bool = False, dataset: str | None = None) -> bool:
"""Check if the video file exists and is accessible.
Args:
check_all: If `True`, check that all filenames in a list exist. If `False`
(the default), check that the first filename exists.
dataset: Name of dataset in HDF5 file. If specified, this will function will
return `False` if the dataset does not exist.
Returns:
`True` if the file exists and is accessible, `False` otherwise.
"""
if isinstance(self.filename, list):
if check_all:
for f in self.filename:
if not is_file_accessible(f):
return False
return True
else:
return is_file_accessible(self.filename[0])
file_is_accessible = is_file_accessible(self.filename)
if not file_is_accessible:
return False
if dataset is None or dataset == "":
dataset = self.backend_metadata.get("dataset", None)
if dataset is not None and dataset != "":
has_dataset = False
if (
self.backend is not None
and type(self.backend) == HDF5Video
and self.backend._open_reader is not None
):
has_dataset = dataset in self.backend._open_reader
else:
with h5py.File(self.filename, "r") as f:
has_dataset = dataset in f
return has_dataset
return True
@property
def is_open(self) -> bool:
"""Check if the video backend is open."""
return self.exists() and self.backend is not None
def open(
self,
filename: Optional[str] = None,
dataset: Optional[str] = None,
grayscale: Optional[str] = None,
keep_open: bool = True,
):
"""Open the video backend for reading.
Args:
filename: Filename to open. If not specified, will use the filename set on
the video object.
dataset: Name of dataset in HDF5 file.
grayscale: Whether to force grayscale. If None, autodetect on first frame
load.
keep_open: Whether to keep the video reader open between calls to read
frames. If False, will close the reader after each call. If True (the
default), it will keep the reader open and cache it for subsequent calls
which may enhance the performance of reading multiple frames.
Notes:
This is useful for opening the video backend to read frames and then closing
it after reading all the necessary frames.
If the backend was already open, it will be closed before opening a new one.
Values for the HDF5 dataset and grayscale will be remembered if not
specified.
"""
if filename is not None:
self.replace_filename(filename, open=False)
# Try to remember values from previous backend if available and not specified.
if self.backend is not None:
if dataset is None:
dataset = getattr(self.backend, "dataset", None)
if grayscale is None:
grayscale = getattr(self.backend, "grayscale", None)
else:
if dataset is None and "dataset" in self.backend_metadata:
dataset = self.backend_metadata["dataset"]
if grayscale is None:
if "grayscale" in self.backend_metadata:
grayscale = self.backend_metadata["grayscale"]
elif "shape" in self.backend_metadata:
grayscale = self.backend_metadata["shape"][-1] == 1
if not self.exists(dataset=dataset):
msg = f"Video does not exist or is inaccessible: {self.filename}"
if dataset is not None:
msg += f" (dataset: {dataset})"
raise FileNotFoundError(msg)
# Close previous backend if open.
self.close()
# Create new backend.
self.backend = VideoBackend.from_filename(
self.filename,
dataset=dataset,
grayscale=grayscale,
keep_open=keep_open,
)
def close(self):
"""Close the video backend."""
if self.backend is not None:
# Try to remember values from previous backend if available and not
# specified.
try:
self.backend_metadata["dataset"] = getattr(
self.backend, "dataset", None
)
self.backend_metadata["grayscale"] = getattr(
self.backend, "grayscale", None
)
self.backend_metadata["shape"] = getattr(self.backend, "shape", None)
except:
pass
del self.backend
self.backend = None
def replace_filename(
self, new_filename: str | Path | list[str] | list[Path], open: bool = True
):
"""Update the filename of the video, optionally opening the backend.
Args:
new_filename: New filename to set for the video.
open: If `True` (the default), open the backend with the new filename. If
the new filename does not exist, no error is raised.
"""
if isinstance(new_filename, Path):
new_filename = new_filename.as_posix()
if isinstance(new_filename, list):
new_filename = [
p.as_posix() if isinstance(p, Path) else p for p in new_filename
]
self.filename = new_filename
self.backend_metadata["filename"] = new_filename
if open:
if self.exists():
self.open()
else:
self.close()
def save(
self,
save_path: str | Path,
frame_inds: list[int] | np.ndarray | None = None,
video_kwargs: dict[str, Any] | None = None,
) -> Video:
"""Save video frames to a new video file.
Args:
save_path: Path to the new video file. Should end in MP4.
frame_inds: Frame indices to save. Can be specified as a list or array of
frame integers. If not specified, saves all video frames.
video_kwargs: A dictionary of keyword arguments to provide to
`sio.save_video` for video compression.
Returns:
A new `Video` object pointing to the new video file.
"""
video_kwargs = {} if video_kwargs is None else video_kwargs
frame_inds = np.arange(len(self)) if frame_inds is None else frame_inds
with VideoWriter(save_path, **video_kwargs) as vw:
for frame_ind in frame_inds:
vw(self[frame_ind])
new_video = Video.from_filename(save_path, grayscale=self.grayscale)
return new_video
grayscale: bool | None
property
writable
¶
Return whether the video is grayscale.
If the video backend is not set or it cannot determine whether the video is grayscale, this will return None.
is_open: bool
property
¶
Check if the video backend is open.
shape: Tuple[int, int, int, int] | None
property
¶
Return the shape of the video as (num_frames, height, width, channels).
If the video backend is not set or it cannot determine the shape of the video, this will return None.
__attrs_post_init__()
¶
Post init syntactic sugar.
Source code in sleap_io/model/video.py
def __attrs_post_init__(self):
"""Post init syntactic sugar."""
if self.open_backend and self.backend is None and self.exists():
try:
self.open()
except Exception as e:
# If we can't open the backend, just ignore it for now so we don't
# prevent the user from building the Video object entirely.
pass
__deepcopy__(memo)
¶
Deep copy the video object.
Source code in sleap_io/model/video.py
def __deepcopy__(self, memo):
"""Deep copy the video object."""
if id(self) in memo:
return memo[id(self)]
reopen = False
if self.is_open:
reopen = True
self.close()
new_video = Video(
filename=self.filename,
backend=None,
backend_metadata=self.backend_metadata,
source_video=self.source_video,
open_backend=self.open_backend,
)
memo[id(self)] = new_video
if reopen:
self.open()
return new_video
__getitem__(inds)
¶
Return the frames of the video at the given indices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inds
|
int | list[int] | slice
|
Index or list of indices of frames to read. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Frame or frames as a numpy array of shape |
See also: VideoBackend.get_frame, VideoBackend.get_frames
Source code in sleap_io/model/video.py
def __getitem__(self, inds: int | list[int] | slice) -> np.ndarray:
"""Return the frames of the video at the given indices.
Args:
inds: Index or list of indices of frames to read.
Returns:
Frame or frames as a numpy array of shape `(height, width, channels)` if a
scalar index is provided, or `(frames, height, width, channels)` if a list
of indices is provided.
See also: VideoBackend.get_frame, VideoBackend.get_frames
"""
if not self.is_open:
if self.open_backend:
self.open()
else:
raise ValueError(
"Video backend is not open. Call video.open() or set "
"video.open_backend to True to do automatically on frame read."
)
return self.backend[inds]
__len__()
¶
__repr__()
¶
Informal string representation (for print or format).
Source code in sleap_io/model/video.py
def __repr__(self) -> str:
"""Informal string representation (for print or format)."""
dataset = (
f"dataset={self.backend.dataset}, "
if getattr(self.backend, "dataset", "")
else ""
)
return (
"Video("
f'filename="{self.filename}", '
f"shape={self.shape}, "
f"{dataset}"
f"backend={type(self.backend).__name__}"
")"
)
__str__()
¶
close()
¶
Close the video backend.
Source code in sleap_io/model/video.py
def close(self):
"""Close the video backend."""
if self.backend is not None:
# Try to remember values from previous backend if available and not
# specified.
try:
self.backend_metadata["dataset"] = getattr(
self.backend, "dataset", None
)
self.backend_metadata["grayscale"] = getattr(
self.backend, "grayscale", None
)
self.backend_metadata["shape"] = getattr(self.backend, "shape", None)
except:
pass
del self.backend
self.backend = None
exists(check_all=False, dataset=None)
¶
Check if the video file exists and is accessible.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
check_all
|
bool
|
If |
False
|
dataset
|
str | None
|
Name of dataset in HDF5 file. If specified, this will function will
return |
None
|
Returns:
Type | Description |
---|---|
bool
|
|
Source code in sleap_io/model/video.py
def exists(self, check_all: bool = False, dataset: str | None = None) -> bool:
"""Check if the video file exists and is accessible.
Args:
check_all: If `True`, check that all filenames in a list exist. If `False`
(the default), check that the first filename exists.
dataset: Name of dataset in HDF5 file. If specified, this will function will
return `False` if the dataset does not exist.
Returns:
`True` if the file exists and is accessible, `False` otherwise.
"""
if isinstance(self.filename, list):
if check_all:
for f in self.filename:
if not is_file_accessible(f):
return False
return True
else:
return is_file_accessible(self.filename[0])
file_is_accessible = is_file_accessible(self.filename)
if not file_is_accessible:
return False
if dataset is None or dataset == "":
dataset = self.backend_metadata.get("dataset", None)
if dataset is not None and dataset != "":
has_dataset = False
if (
self.backend is not None
and type(self.backend) == HDF5Video
and self.backend._open_reader is not None
):
has_dataset = dataset in self.backend._open_reader
else:
with h5py.File(self.filename, "r") as f:
has_dataset = dataset in f
return has_dataset
return True
from_filename(filename, dataset=None, grayscale=None, keep_open=True, source_video=None, **kwargs)
classmethod
¶
Create a Video from a filename.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str | list[str]
|
The filename(s) of the video. Supported extensions: "mp4", "avi", "mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif", "tiff", "bmp". If the filename is a list, a list of image filenames are expected. If filename is a folder, it will be searched for images. |
required |
dataset
|
Optional[str]
|
Name of dataset in HDF5 file. |
None
|
grayscale
|
Optional[bool]
|
Whether to force grayscale. If None, autodetect on first frame load. |
None
|
keep_open
|
bool
|
Whether to keep the video reader open between calls to read frames. If False, will close the reader after each call. If True (the default), it will keep the reader open and cache it for subsequent calls which may enhance the performance of reading multiple frames. |
True
|
source_video
|
Optional[Video]
|
The source video object if this is a proxy video. This is present when the video contains an embedded subset of frames from another video. |
None
|
Returns:
Type | Description |
---|---|
VideoBackend
|
Video instance with the appropriate backend instantiated. |
Source code in sleap_io/model/video.py
@classmethod
def from_filename(
cls,
filename: str | list[str],
dataset: Optional[str] = None,
grayscale: Optional[bool] = None,
keep_open: bool = True,
source_video: Optional[Video] = None,
**kwargs,
) -> VideoBackend:
"""Create a Video from a filename.
Args:
filename: The filename(s) of the video. Supported extensions: "mp4", "avi",
"mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif",
"tiff", "bmp". If the filename is a list, a list of image filenames are
expected. If filename is a folder, it will be searched for images.
dataset: Name of dataset in HDF5 file.
grayscale: Whether to force grayscale. If None, autodetect on first frame
load.
keep_open: Whether to keep the video reader open between calls to read
frames. If False, will close the reader after each call. If True (the
default), it will keep the reader open and cache it for subsequent calls
which may enhance the performance of reading multiple frames.
source_video: The source video object if this is a proxy video. This is
present when the video contains an embedded subset of frames from
another video.
Returns:
Video instance with the appropriate backend instantiated.
"""
return cls(
filename=filename,
backend=VideoBackend.from_filename(
filename,
dataset=dataset,
grayscale=grayscale,
keep_open=keep_open,
**kwargs,
),
source_video=source_video,
)
open(filename=None, dataset=None, grayscale=None, keep_open=True)
¶
Open the video backend for reading.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
Optional[str]
|
Filename to open. If not specified, will use the filename set on the video object. |
None
|
dataset
|
Optional[str]
|
Name of dataset in HDF5 file. |
None
|
grayscale
|
Optional[str]
|
Whether to force grayscale. If None, autodetect on first frame load. |
None
|
keep_open
|
bool
|
Whether to keep the video reader open between calls to read frames. If False, will close the reader after each call. If True (the default), it will keep the reader open and cache it for subsequent calls which may enhance the performance of reading multiple frames. |
True
|
Notes
This is useful for opening the video backend to read frames and then closing it after reading all the necessary frames.
If the backend was already open, it will be closed before opening a new one. Values for the HDF5 dataset and grayscale will be remembered if not specified.
Source code in sleap_io/model/video.py
def open(
self,
filename: Optional[str] = None,
dataset: Optional[str] = None,
grayscale: Optional[str] = None,
keep_open: bool = True,
):
"""Open the video backend for reading.
Args:
filename: Filename to open. If not specified, will use the filename set on
the video object.
dataset: Name of dataset in HDF5 file.
grayscale: Whether to force grayscale. If None, autodetect on first frame
load.
keep_open: Whether to keep the video reader open between calls to read
frames. If False, will close the reader after each call. If True (the
default), it will keep the reader open and cache it for subsequent calls
which may enhance the performance of reading multiple frames.
Notes:
This is useful for opening the video backend to read frames and then closing
it after reading all the necessary frames.
If the backend was already open, it will be closed before opening a new one.
Values for the HDF5 dataset and grayscale will be remembered if not
specified.
"""
if filename is not None:
self.replace_filename(filename, open=False)
# Try to remember values from previous backend if available and not specified.
if self.backend is not None:
if dataset is None:
dataset = getattr(self.backend, "dataset", None)
if grayscale is None:
grayscale = getattr(self.backend, "grayscale", None)
else:
if dataset is None and "dataset" in self.backend_metadata:
dataset = self.backend_metadata["dataset"]
if grayscale is None:
if "grayscale" in self.backend_metadata:
grayscale = self.backend_metadata["grayscale"]
elif "shape" in self.backend_metadata:
grayscale = self.backend_metadata["shape"][-1] == 1
if not self.exists(dataset=dataset):
msg = f"Video does not exist or is inaccessible: {self.filename}"
if dataset is not None:
msg += f" (dataset: {dataset})"
raise FileNotFoundError(msg)
# Close previous backend if open.
self.close()
# Create new backend.
self.backend = VideoBackend.from_filename(
self.filename,
dataset=dataset,
grayscale=grayscale,
keep_open=keep_open,
)
replace_filename(new_filename, open=True)
¶
Update the filename of the video, optionally opening the backend.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_filename
|
str | Path | list[str] | list[Path]
|
New filename to set for the video. |
required |
open
|
bool
|
If |
True
|
Source code in sleap_io/model/video.py
def replace_filename(
self, new_filename: str | Path | list[str] | list[Path], open: bool = True
):
"""Update the filename of the video, optionally opening the backend.
Args:
new_filename: New filename to set for the video.
open: If `True` (the default), open the backend with the new filename. If
the new filename does not exist, no error is raised.
"""
if isinstance(new_filename, Path):
new_filename = new_filename.as_posix()
if isinstance(new_filename, list):
new_filename = [
p.as_posix() if isinstance(p, Path) else p for p in new_filename
]
self.filename = new_filename
self.backend_metadata["filename"] = new_filename
if open:
if self.exists():
self.open()
else:
self.close()
save(save_path, frame_inds=None, video_kwargs=None)
¶
Save video frames to a new video file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
save_path
|
str | Path
|
Path to the new video file. Should end in MP4. |
required |
frame_inds
|
list[int] | ndarray | None
|
Frame indices to save. Can be specified as a list or array of frame integers. If not specified, saves all video frames. |
None
|
video_kwargs
|
dict[str, Any] | None
|
A dictionary of keyword arguments to provide to
|
None
|
Returns:
Type | Description |
---|---|
Video
|
A new |
Source code in sleap_io/model/video.py
def save(
self,
save_path: str | Path,
frame_inds: list[int] | np.ndarray | None = None,
video_kwargs: dict[str, Any] | None = None,
) -> Video:
"""Save video frames to a new video file.
Args:
save_path: Path to the new video file. Should end in MP4.
frame_inds: Frame indices to save. Can be specified as a list or array of
frame integers. If not specified, saves all video frames.
video_kwargs: A dictionary of keyword arguments to provide to
`sio.save_video` for video compression.
Returns:
A new `Video` object pointing to the new video file.
"""
video_kwargs = {} if video_kwargs is None else video_kwargs
frame_inds = np.arange(len(self)) if frame_inds is None else frame_inds
with VideoWriter(save_path, **video_kwargs) as vw:
for frame_ind in frame_inds:
vw(self[frame_ind])
new_video = Video.from_filename(save_path, grayscale=self.grayscale)
return new_video