Data formats¶
sleap_io.load_file(filename, format=None, **kwargs)
¶
Load a file and return the appropriate object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str | Path
|
Path to a file. |
required |
format
|
Optional[str]
|
Optional format to load as. If not provided, will be inferred from the file extension. Available formats are: "slp", "nwb", "labelstudio", "coco", "jabs", "dlc", "ultralytics", and "video". |
None
|
**kwargs
|
Additional arguments passed to the format-specific loading function:
- For "slp" format: No additional arguments.
- For "nwb" format: No additional arguments.
- For "labelstudio" format: skeleton (Optional[Skeleton]): Skeleton to
use for
the labels.
- For "coco" format: dataset_root (Optional[str]): Root directory of the
dataset. grayscale (bool): If True, load images as grayscale (1 channel).
If False, load as RGB (3 channels). Default is False.
- For "jabs" format: skeleton (Optional[Skeleton]): Skeleton to use for
the labels.
- For "dlc" format: video_search_paths (Optional[List[str]]): Paths to
search for video files.
- For "ultralytics" format: See |
{}
|
Returns:
Type | Description |
---|---|
Union[Labels, Video]
|
A |
Source code in sleap_io/io/main.py
def load_file(
filename: str | Path, format: Optional[str] = None, **kwargs
) -> Union[Labels, Video]:
"""Load a file and return the appropriate object.
Args:
filename: Path to a file.
format: Optional format to load as. If not provided, will be inferred from the
file extension. Available formats are: "slp", "nwb", "labelstudio", "coco",
"jabs", "dlc", "ultralytics", and "video".
**kwargs: Additional arguments passed to the format-specific loading function:
- For "slp" format: No additional arguments.
- For "nwb" format: No additional arguments.
- For "labelstudio" format: skeleton (Optional[Skeleton]): Skeleton to
use for
the labels.
- For "coco" format: dataset_root (Optional[str]): Root directory of the
dataset. grayscale (bool): If True, load images as grayscale (1 channel).
If False, load as RGB (3 channels). Default is False.
- For "jabs" format: skeleton (Optional[Skeleton]): Skeleton to use for
the labels.
- For "dlc" format: video_search_paths (Optional[List[str]]): Paths to
search for video files.
- For "ultralytics" format: See `load_ultralytics` for supported arguments.
- For "video" format: See `load_video` for supported arguments.
Returns:
A `Labels` or `Video` object.
"""
if isinstance(filename, Path):
filename = filename.as_posix()
if format is None:
if filename.endswith(".slp"):
format = "slp"
elif filename.endswith(".nwb"):
format = "nwb"
elif filename.endswith(".json"):
# Detect if this is COCO format or Label Studio format
if _detect_coco_format(filename):
format = "coco"
else:
format = "json"
elif filename.endswith(".h5"):
format = "jabs"
elif filename.endswith("data.yaml") or (
Path(filename).is_dir() and (Path(filename) / "data.yaml").exists()
):
format = "ultralytics"
elif filename.endswith(".csv") and dlc.is_dlc_file(filename):
format = "dlc"
else:
for vid_ext in Video.EXTS:
if filename.endswith(vid_ext):
format = "video"
break
if format is None:
raise ValueError(f"Could not infer format from filename: '{filename}'.")
if filename.endswith(".slp"):
return load_slp(filename, **kwargs)
elif filename.endswith(".nwb"):
return load_nwb(filename, **kwargs)
elif filename.endswith(".json"):
if format == "coco":
return load_coco(filename, **kwargs)
else:
return load_labelstudio(filename, **kwargs)
elif filename.endswith(".h5"):
return load_jabs(filename, **kwargs)
elif format == "dlc":
return load_dlc(filename, **kwargs)
elif format == "ultralytics":
return load_ultralytics(filename, **kwargs)
elif format == "video":
return load_video(filename, **kwargs)
sleap_io.save_file(labels, filename, format=None, verbose=True, **kwargs)
¶
Save a file based on the extension.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
Labels
|
A SLEAP |
required |
filename
|
str | Path
|
Path to save labels to. |
required |
format
|
Optional[str]
|
Optional format to save as. If not provided, will be inferred from the file extension. Available formats are: "slp", "nwb", "labelstudio", "jabs", and "ultralytics". |
None
|
verbose
|
bool
|
If |
True
|
**kwargs
|
Additional arguments passed to the format-specific saving function:
- For "slp" format: embed (bool | str | list[tuple[Video, int]] |
None): Frames
to embed in the saved labels file. One of None, True, "all", "user",
"suggestions", "user+suggestions", "source" or list of tuples of
(video, frame_idx). If False (the default), no frames are embedded.
- For "nwb" format: pose_estimation_metadata (dict): Metadata to store
in the
NWB file. append (bool): If True, append to existing NWB file.
- For "labelstudio" format: No additional arguments.
- For "jabs" format: pose_version (int): JABS pose format version (1-6).
root_folder (Optional[str]): Root folder for JABS project structure.
- For "ultralytics" format: See |
{}
|
Source code in sleap_io/io/main.py
def save_file(
labels: Labels,
filename: str | Path,
format: Optional[str] = None,
verbose: bool = True,
**kwargs,
):
"""Save a file based on the extension.
Args:
labels: A SLEAP `Labels` object (see `load_slp`).
filename: Path to save labels to.
format: Optional format to save as. If not provided, will be inferred from the
file extension. Available formats are: "slp", "nwb", "labelstudio", "jabs",
and "ultralytics".
verbose: If `True` (the default), display a progress bar when embedding frames
(only applies to the SLP format).
**kwargs: Additional arguments passed to the format-specific saving function:
- For "slp" format: embed (bool | str | list[tuple[Video, int]] |
None): Frames
to embed in the saved labels file. One of None, True, "all", "user",
"suggestions", "user+suggestions", "source" or list of tuples of
(video, frame_idx). If False (the default), no frames are embedded.
- For "nwb" format: pose_estimation_metadata (dict): Metadata to store
in the
NWB file. append (bool): If True, append to existing NWB file.
- For "labelstudio" format: No additional arguments.
- For "jabs" format: pose_version (int): JABS pose format version (1-6).
root_folder (Optional[str]): Root folder for JABS project structure.
- For "ultralytics" format: See `save_ultralytics` for supported arguments.
"""
if isinstance(filename, Path):
filename = str(filename)
if format is None:
if filename.endswith(".slp"):
format = "slp"
elif filename.endswith(".nwb"):
format = "nwb"
elif filename.endswith(".json"):
format = "labelstudio"
elif "pose_version" in kwargs:
format = "jabs"
elif "split_ratios" in kwargs or Path(filename).is_dir():
format = "ultralytics"
if format == "slp":
save_slp(labels, filename, verbose=verbose, **kwargs)
elif format == "nwb":
save_nwb(labels, filename, **kwargs)
elif format == "labelstudio":
save_labelstudio(labels, filename, **kwargs)
elif format == "jabs":
pose_version = kwargs.pop("pose_version", 5)
root_folder = kwargs.pop("root_folder", filename)
save_jabs(labels, pose_version=pose_version, root_folder=root_folder)
elif format == "ultralytics":
save_ultralytics(labels, filename, **kwargs)
else:
raise ValueError(f"Unknown format '{format}' for filename: '{filename}'.")
sleap_io.load_video(filename, **kwargs)
¶
Load a video file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str
|
The filename(s) of the video. Supported extensions: "mp4", "avi", "mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif", "tiff", "bmp". If the filename is a list, a list of image filenames are expected. If filename is a folder, it will be searched for images. |
required |
**kwargs
|
Additional arguments passed to If not specified, uses the following priority:
1. Global default set via To set a global default:
|
{}
|
Returns:
Type | Description |
---|---|
Video
|
A |
See Also
set_default_video_plugin: Set the default video plugin globally. get_default_video_plugin: Get the current default video plugin.
Source code in sleap_io/io/main.py
def load_video(filename: str, **kwargs) -> Video:
"""Load a video file.
Args:
filename: The filename(s) of the video. Supported extensions: "mp4", "avi",
"mov", "mj2", "mkv", "h5", "hdf5", "slp", "png", "jpg", "jpeg", "tif",
"tiff", "bmp". If the filename is a list, a list of image filenames are
expected. If filename is a folder, it will be searched for images.
**kwargs: Additional arguments passed to `Video.from_filename`.
Currently supports:
- dataset: Name of dataset in HDF5 file.
- grayscale: Whether to force grayscale. If None, autodetect on first
frame load.
- keep_open: Whether to keep the video reader open between calls to read
frames.
If False, will close the reader after each call. If True (the
default), it will
keep the reader open and cache it for subsequent calls which may
enhance the
performance of reading multiple frames.
- source_video: Source video object if this is a proxy video. This is
metadata
and does not affect reading.
- backend_metadata: Metadata to store on the video backend. This is
useful for
storing metadata that requires an open backend (e.g., shape
information) without
having to open the backend.
- plugin: Video plugin to use for MediaVideo backend. One of "opencv",
"FFMPEG",
or "pyav". Also accepts aliases (case-insensitive):
* opencv: "opencv", "cv", "cv2", "ocv"
* FFMPEG: "FFMPEG", "ffmpeg", "imageio-ffmpeg", "imageio_ffmpeg"
* pyav: "pyav", "av"
If not specified, uses the following priority:
1. Global default set via `sio.set_default_video_plugin()`
2. Auto-detection based on available packages
To set a global default:
>>> import sleap_io as sio
>>> sio.set_default_video_plugin("opencv")
>>> video = sio.load_video("video.mp4") # Uses opencv
- input_format: Format of the data in HDF5 datasets. One of
"channels_last" (the
default) in (frames, height, width, channels) order or "channels_first" in
(frames, channels, width, height) order.
- frame_map: Mapping from frame indices to indices in the HDF5 dataset.
This is
used to translate between frame indices of images within their source
video
and indices of images in the dataset.
- source_filename: Path to the source video file for HDF5 embedded videos.
- source_inds: Indices of frames in the source video file for HDF5
embedded videos.
- image_format: Format of images in HDF5 embedded dataset.
Returns:
A `Video` object.
See Also:
set_default_video_plugin: Set the default video plugin globally.
get_default_video_plugin: Get the current default video plugin.
"""
return Video.from_filename(filename, **kwargs)
sleap_io.save_video(frames, filename, fps=30, pixelformat='yuv420p', codec='libx264', crf=25, preset='superfast', output_params=None)
¶
Write a list of frames to a video file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
frames
|
ndarray | Video
|
Sequence of frames to write to video. Each frame should be a 2D or 3D numpy array with dimensions (height, width) or (height, width, channels). |
required |
filename
|
str | Path
|
Path to output video file. |
required |
fps
|
float
|
Frames per second. Defaults to 30. |
30
|
pixelformat
|
str
|
Pixel format for video. Defaults to "yuv420p". |
'yuv420p'
|
codec
|
str
|
Codec to use for encoding. Defaults to "libx264". |
'libx264'
|
crf
|
int
|
Constant rate factor to control lossiness of video. Values go from 2 to 32, with numbers in the 18 to 30 range being most common. Lower values mean less compressed/higher quality. Defaults to 25. No effect if codec is not "libx264". |
25
|
preset
|
str
|
H264 encoding preset. Defaults to "superfast". No effect if codec is not "libx264". |
'superfast'
|
output_params
|
list | None
|
Additional output parameters for FFMPEG. This should be a list of
strings corresponding to command line arguments for FFMPEG and libx264. Use
|
None
|
See also: sio.VideoWriter
Source code in sleap_io/io/main.py
def save_video(
frames: np.ndarray | Video,
filename: str | Path,
fps: float = 30,
pixelformat: str = "yuv420p",
codec: str = "libx264",
crf: int = 25,
preset: str = "superfast",
output_params: list | None = None,
):
"""Write a list of frames to a video file.
Args:
frames: Sequence of frames to write to video. Each frame should be a 2D or 3D
numpy array with dimensions (height, width) or (height, width, channels).
filename: Path to output video file.
fps: Frames per second. Defaults to 30.
pixelformat: Pixel format for video. Defaults to "yuv420p".
codec: Codec to use for encoding. Defaults to "libx264".
crf: Constant rate factor to control lossiness of video. Values go from 2 to 32,
with numbers in the 18 to 30 range being most common. Lower values mean less
compressed/higher quality. Defaults to 25. No effect if codec is not
"libx264".
preset: H264 encoding preset. Defaults to "superfast". No effect if codec is not
"libx264".
output_params: Additional output parameters for FFMPEG. This should be a list of
strings corresponding to command line arguments for FFMPEG and libx264. Use
`ffmpeg -h encoder=libx264` to see all options for libx264 output_params.
See also: `sio.VideoWriter`
"""
if output_params is None:
output_params = []
with video_writing.VideoWriter(
filename,
fps=fps,
pixelformat=pixelformat,
codec=codec,
crf=crf,
preset=preset,
output_params=output_params,
) as writer:
for frame in frames:
writer(frame)
sleap_io.load_labels_set(path, format=None, open_videos=True, **kwargs)
¶
Load a LabelsSet from multiple files.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
Union[str, Path, list[Union[str, Path]], dict[str, Union[str, Path]]]
|
Can be one of: - A directory path containing label files - A list of file paths - A dictionary mapping names to file paths |
required |
format
|
Optional[str]
|
Optional format specification. If None, will try to infer from path. Supported formats: "slp", "ultralytics" |
None
|
open_videos
|
bool
|
If |
True
|
**kwargs
|
Additional format-specific arguments. |
{}
|
Returns:
Type | Description |
---|---|
LabelsSet
|
A LabelsSet containing the loaded Labels objects. |
Examples:
Load from SLP directory:
Load from list of SLP files:
Load from Ultralytics dataset:
Source code in sleap_io/io/main.py
def load_labels_set(
path: Union[str, Path, list[Union[str, Path]], dict[str, Union[str, Path]]],
format: Optional[str] = None,
open_videos: bool = True,
**kwargs,
) -> LabelsSet:
"""Load a LabelsSet from multiple files.
Args:
path: Can be one of:
- A directory path containing label files
- A list of file paths
- A dictionary mapping names to file paths
format: Optional format specification. If None, will try to infer from path.
Supported formats: "slp", "ultralytics"
open_videos: If `True` (the default), attempt to open video backends.
**kwargs: Additional format-specific arguments.
Returns:
A LabelsSet containing the loaded Labels objects.
Examples:
Load from SLP directory:
>>> labels_set = load_labels_set("path/to/splits/")
Load from list of SLP files:
>>> labels_set = load_labels_set(["train.slp", "val.slp"])
Load from Ultralytics dataset:
>>> labels_set = load_labels_set("path/to/yolo_dataset/", format="ultralytics")
"""
# Try to infer format if not specified
if format is None:
if isinstance(path, (str, Path)):
path_obj = Path(path)
if path_obj.is_dir():
# Check for ultralytics structure
if (path_obj / "data.yaml").exists() or any(
(path_obj / split).exists() for split in ["train", "val", "test"]
):
format = "ultralytics"
else:
# Default to SLP for directories
format = "slp"
else:
# Single file path - check extension
if path_obj.suffix == ".slp":
format = "slp"
elif isinstance(path, list) and len(path) > 0:
# Check first file in list
first_path = Path(path[0])
if first_path.suffix == ".slp":
format = "slp"
elif isinstance(path, dict):
# Dictionary input defaults to SLP
format = "slp"
if format == "slp":
return slp.read_labels_set(path, open_videos=open_videos)
elif format == "ultralytics":
# Extract ultralytics-specific kwargs
splits = kwargs.pop("splits", None)
skeleton = kwargs.pop("skeleton", None)
image_size = kwargs.pop("image_size", (480, 640))
# Remove verbose from kwargs if present (for backward compatibility)
kwargs.pop("verbose", None)
if not isinstance(path, (str, Path)):
raise ValueError(
"Ultralytics format requires a directory path, "
f"got {type(path).__name__}"
)
return ultralytics.read_labels_set(
str(path),
splits=splits,
skeleton=skeleton,
image_size=image_size,
)
else:
raise ValueError(
f"Unknown format: {format}. Supported formats: 'slp', 'ultralytics'"
)
sleap_io.load_slp(filename, open_videos=True)
¶
Load a SLEAP dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str
|
Path to a SLEAP labels file ( |
required |
open_videos
|
bool
|
If |
True
|
Returns:
Type | Description |
---|---|
Labels
|
The dataset as a |
Source code in sleap_io/io/main.py
def load_slp(filename: str, open_videos: bool = True) -> Labels:
"""Load a SLEAP dataset.
Args:
filename: Path to a SLEAP labels file (`.slp`).
open_videos: If `True` (the default), attempt to open the video backend for
I/O. If `False`, the backend will not be opened (useful for reading metadata
when the video files are not available).
Returns:
The dataset as a `Labels` object.
"""
return slp.read_labels(filename, open_videos=open_videos)
sleap_io.save_slp(labels, filename, embed=False, restore_original_videos=True, verbose=True)
¶
Save a SLEAP dataset to a .slp
file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
Labels
|
A SLEAP |
required |
filename
|
str
|
Path to save labels to ending with |
required |
embed
|
bool | str | list[tuple[Video, int]] | None
|
Frames to embed in the saved labels file. One of If If If This argument is only valid for the SLP backend. |
False
|
restore_original_videos
|
bool
|
If |
True
|
verbose
|
bool
|
If |
True
|
Source code in sleap_io/io/main.py
def save_slp(
labels: Labels,
filename: str,
embed: bool | str | list[tuple[Video, int]] | None = False,
restore_original_videos: bool = True,
verbose: bool = True,
):
"""Save a SLEAP dataset to a `.slp` file.
Args:
labels: A SLEAP `Labels` object (see `load_slp`).
filename: Path to save labels to ending with `.slp`.
embed: Frames to embed in the saved labels file. One of `None`, `True`,
`"all"`, `"user"`, `"suggestions"`, `"user+suggestions"`, `"source"` or list
of tuples of `(video, frame_idx)`.
If `False` is specified (the default), the source video will be restored
if available, otherwise the embedded frames will be re-saved.
If `True` or `"all"`, all labeled frames and suggested frames will be
embedded.
If `"source"` is specified, no images will be embedded and the source video
will be restored if available.
This argument is only valid for the SLP backend.
restore_original_videos: If `True` (default) and `embed=False`, use original
video files. If `False` and `embed=False`, keep references to source
`.pkg.slp` files. Only applies when `embed=False`.
verbose: If `True` (the default), display a progress bar when embedding frames.
"""
return slp.write_labels(
filename,
labels,
embed=embed,
restore_original_videos=restore_original_videos,
verbose=verbose,
)
sleap_io.load_nwb(filename)
¶
Load an NWB dataset as a SLEAP Labels
object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str
|
Path to a NWB file ( |
required |
Returns:
Type | Description |
---|---|
Labels
|
The dataset as a |
sleap_io.save_nwb(labels, filename, append=True)
¶
Save a SLEAP dataset to NWB format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
Labels
|
A SLEAP |
required |
filename
|
str
|
Path to NWB file to save to. Must end in |
required |
append
|
bool
|
If |
True
|
See also: nwb.write_nwb, nwb.append_nwb
Source code in sleap_io/io/main.py
def save_nwb(labels: Labels, filename: str, append: bool = True):
"""Save a SLEAP dataset to NWB format.
Args:
labels: A SLEAP `Labels` object (see `load_slp`).
filename: Path to NWB file to save to. Must end in `.nwb`.
append: If `True` (the default), append to existing NWB file. File will be
created if it does not exist.
See also: nwb.write_nwb, nwb.append_nwb
"""
if append and Path(filename).exists():
nwb.append_nwb(labels, filename)
else:
nwb.write_nwb(labels, filename)
sleap_io.load_jabs(filename, skeleton=None)
¶
Read JABS-style predictions from a file and return a Labels
object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str
|
Path to the jabs h5 pose file. |
required |
skeleton
|
Optional[Skeleton]
|
An optional |
None
|
Returns:
Type | Description |
---|---|
Labels
|
Parsed labels as a |
Source code in sleap_io/io/main.py
def load_jabs(filename: str, skeleton: Optional[Skeleton] = None) -> Labels:
"""Read JABS-style predictions from a file and return a `Labels` object.
Args:
filename: Path to the jabs h5 pose file.
skeleton: An optional `Skeleton` object.
Returns:
Parsed labels as a `Labels` instance.
"""
return jabs.read_labels(filename, skeleton=skeleton)
sleap_io.save_jabs(labels, pose_version, root_folder=None)
¶
Save a SLEAP dataset to JABS pose file format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
Labels
|
SLEAP |
required |
pose_version
|
int
|
The JABS pose version to write data out. |
required |
root_folder
|
Optional[str]
|
Optional root folder where the files should be saved. |
None
|
Note
Filenames for JABS poses are based on video filenames.
Source code in sleap_io/io/main.py
def save_jabs(labels: Labels, pose_version: int, root_folder: Optional[str] = None):
"""Save a SLEAP dataset to JABS pose file format.
Args:
labels: SLEAP `Labels` object.
pose_version: The JABS pose version to write data out.
root_folder: Optional root folder where the files should be saved.
Note:
Filenames for JABS poses are based on video filenames.
"""
jabs.write_labels(labels, pose_version, root_folder)
sleap_io.load_labelstudio(filename, skeleton=None)
¶
Read Label Studio-style annotations from a file and return a Labels
object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str
|
Path to the label-studio annotation file in JSON format. |
required |
skeleton
|
Optional[Union[Skeleton, list[str]]]
|
An optional |
None
|
Returns:
Type | Description |
---|---|
Labels
|
Parsed labels as a |
Source code in sleap_io/io/main.py
def load_labelstudio(
filename: str, skeleton: Optional[Union[Skeleton, list[str]]] = None
) -> Labels:
"""Read Label Studio-style annotations from a file and return a `Labels` object.
Args:
filename: Path to the label-studio annotation file in JSON format.
skeleton: An optional `Skeleton` object or list of node names. If not provided
(the default), skeleton will be inferred from the data. It may be useful to
provide this so the keypoint label types can be filtered to just the ones in
the skeleton.
Returns:
Parsed labels as a `Labels` instance.
"""
return labelstudio.read_labels(filename, skeleton=skeleton)
sleap_io.save_labelstudio(labels, filename)
¶
Save a SLEAP dataset to Label Studio format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
Labels
|
A SLEAP |
required |
filename
|
str
|
Path to save labels to ending with |
required |
sleap_io.load_coco(json_path, dataset_root=None, grayscale=False, **kwargs)
¶
Load a COCO-style pose dataset and return a Labels object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
json_path
|
str
|
Path to the COCO annotation JSON file. |
required |
dataset_root
|
Optional[str]
|
Root directory of the dataset. If None, uses parent directory of json_path. |
None
|
grayscale
|
bool
|
If True, load images as grayscale (1 channel). If False, load as RGB (3 channels). Default is False. |
False
|
**kwargs
|
Additional arguments (currently unused). |
{}
|
Returns:
Type | Description |
---|---|
Labels
|
The dataset as a |
Source code in sleap_io/io/main.py
def load_coco(
json_path: str,
dataset_root: Optional[str] = None,
grayscale: bool = False,
**kwargs,
) -> Labels:
"""Load a COCO-style pose dataset and return a Labels object.
Args:
json_path: Path to the COCO annotation JSON file.
dataset_root: Root directory of the dataset. If None, uses parent directory
of json_path.
grayscale: If True, load images as grayscale (1 channel). If False, load as
RGB (3 channels). Default is False.
**kwargs: Additional arguments (currently unused).
Returns:
The dataset as a `Labels` object.
"""
return coco.read_labels(json_path, dataset_root=dataset_root, grayscale=grayscale)
sleap_io.load_dlc(filename, video_search_paths=None, **kwargs)
¶
Read DeepLabCut annotations from a CSV file and return a Labels
object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str
|
Path to DLC CSV file with annotations. |
required |
video_search_paths
|
Optional[List[Union[str, Path]]]
|
Optional list of paths to search for video files. |
None
|
**kwargs
|
Additional arguments passed to DLC loader. |
{}
|
Returns:
Type | Description |
---|---|
Labels
|
Parsed labels as a |
Source code in sleap_io/io/main.py
def load_dlc(
filename: str, video_search_paths: Optional[List[Union[str, Path]]] = None, **kwargs
) -> Labels:
"""Read DeepLabCut annotations from a CSV file and return a `Labels` object.
Args:
filename: Path to DLC CSV file with annotations.
video_search_paths: Optional list of paths to search for video files.
**kwargs: Additional arguments passed to DLC loader.
Returns:
Parsed labels as a `Labels` instance.
"""
return dlc.load_dlc(filename, video_search_paths=video_search_paths, **kwargs)
sleap_io.load_ultralytics(dataset_path, split='train', skeleton=None, **kwargs)
¶
Load an Ultralytics YOLO pose dataset as a SLEAP Labels
object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_path
|
str
|
Path to the Ultralytics dataset root directory containing data.yaml. |
required |
split
|
str
|
Dataset split to read ('train', 'val', or 'test'). Defaults to 'train'. |
'train'
|
skeleton
|
Optional[Skeleton]
|
Optional skeleton to use. If not provided, will be inferred from data.yaml. |
None
|
**kwargs
|
Additional arguments passed to |
{}
|
Returns:
Type | Description |
---|---|
Labels
|
The dataset as a |
Source code in sleap_io/io/main.py
def load_ultralytics(
dataset_path: str,
split: str = "train",
skeleton: Optional[Skeleton] = None,
**kwargs,
) -> Labels:
"""Load an Ultralytics YOLO pose dataset as a SLEAP `Labels` object.
Args:
dataset_path: Path to the Ultralytics dataset root directory containing
data.yaml.
split: Dataset split to read ('train', 'val', or 'test'). Defaults to 'train'.
skeleton: Optional skeleton to use. If not provided, will be inferred from
data.yaml.
**kwargs: Additional arguments passed to `ultralytics.read_labels`.
Currently supports:
- image_size: Tuple of (height, width) for coordinate denormalization.
Defaults to
(480, 640). Will attempt to infer from actual images if available.
Returns:
The dataset as a `Labels` object.
"""
return ultralytics.read_labels(
dataset_path, split=split, skeleton=skeleton, **kwargs
)
sleap_io.save_ultralytics(labels, dataset_path, split_ratios={'train': 0.8, 'val': 0.2}, **kwargs)
¶
Save a SLEAP dataset to Ultralytics YOLO pose format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
Labels
|
A SLEAP |
required |
dataset_path
|
str
|
Path to save the Ultralytics dataset. |
required |
split_ratios
|
dict
|
Dictionary mapping split names to ratios (must sum to 1.0). Defaults to {"train": 0.8, "val": 0.2}. |
{'train': 0.8, 'val': 0.2}
|
**kwargs
|
Additional arguments passed to |
{}
|
Source code in sleap_io/io/main.py
def save_ultralytics(
labels: Labels,
dataset_path: str,
split_ratios: dict = {"train": 0.8, "val": 0.2},
**kwargs,
):
"""Save a SLEAP dataset to Ultralytics YOLO pose format.
Args:
labels: A SLEAP `Labels` object.
dataset_path: Path to save the Ultralytics dataset.
split_ratios: Dictionary mapping split names to ratios (must sum to 1.0).
Defaults to {"train": 0.8, "val": 0.2}.
**kwargs: Additional arguments passed to `ultralytics.write_labels`.
Currently supports:
- class_id: Class ID to use for all instances (default: 0).
- image_format: Image format to use for saving frames. Either "png"
(default, lossless) or "jpg".
- image_quality: Image quality for JPEG format (1-100). For PNG, this is
the compression
level (0-9). If None, uses default quality settings.
- verbose: If True (default), show progress bars during export.
- use_multiprocessing: If True, use multiprocessing for parallel image
saving. Default is False.
- n_workers: Number of worker processes. If None, uses CPU count - 1.
Only used if
use_multiprocessing=True.
"""
ultralytics.write_labels(labels, dataset_path, split_ratios=split_ratios, **kwargs)
sleap_io.load_skeleton(filename)
¶
Load skeleton(s) from a JSON, YAML, or SLP file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str | Path
|
Path to a skeleton file. Supported formats: - JSON: Standalone skeleton or training config with embedded skeletons - YAML: Simplified skeleton format - SLP: SLEAP project file |
required |
Returns:
Type | Description |
---|---|
Union[Skeleton, List[Skeleton]]
|
A single |
Notes
This function loads skeletons from various file types: - JSON files: Can be standalone skeleton files (jsonpickle format) or training config files with embedded skeletons - YAML files: Use a simplified human-readable format - SLP files: Extracts skeletons from SLEAP project files The format is detected based on the file extension and content.
Source code in sleap_io/io/main.py
def load_skeleton(filename: str | Path) -> Union[Skeleton, List[Skeleton]]:
"""Load skeleton(s) from a JSON, YAML, or SLP file.
Args:
filename: Path to a skeleton file. Supported formats:
- JSON: Standalone skeleton or training config with embedded skeletons
- YAML: Simplified skeleton format
- SLP: SLEAP project file
Returns:
A single `Skeleton` or list of `Skeleton` objects.
Notes:
This function loads skeletons from various file types:
- JSON files: Can be standalone skeleton files (jsonpickle format) or training
config files with embedded skeletons
- YAML files: Use a simplified human-readable format
- SLP files: Extracts skeletons from SLEAP project files
The format is detected based on the file extension and content.
"""
if isinstance(filename, Path):
filename = str(filename)
# Detect format based on extension
if filename.lower().endswith(".slp"):
# SLP format - extract skeletons from SLEAP file
from sleap_io.io.slp import read_skeletons
return read_skeletons(filename)
elif filename.lower().endswith((".yaml", ".yml")):
# YAML format
with open(filename, "r") as f:
yaml_data = f.read()
decoder = SkeletonYAMLDecoder()
return decoder.decode(yaml_data)
else:
# JSON format (default) - could be standalone or training config
import json
with open(filename, "r") as f:
json_data = f.read()
# Try to detect if this is a training config file
try:
data = json.loads(json_data)
if isinstance(data, dict) and "data" in data:
if "labels" in data["data"] and "skeletons" in data["data"]["labels"]:
# This is a training config file with embedded skeletons
decoder = SkeletonDecoder()
return decoder.decode(data["data"]["labels"]["skeletons"])
except (json.JSONDecodeError, KeyError, TypeError):
# Not a training config or invalid JSON structure
pass
# Fall back to regular skeleton JSON decoding
decoder = SkeletonDecoder()
return decoder.decode(json_data)
sleap_io.save_skeleton(skeleton, filename)
¶
Save skeleton(s) to a JSON or YAML file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
skeleton
|
Union[Skeleton, List[Skeleton]]
|
A single |
required |
filename
|
str | Path
|
Path to save the skeleton file. |
required |
Notes
This function saves skeletons in either JSON or YAML format based on the file extension. JSON files use the jsonpickle format compatible with SLEAP, while YAML files use a simplified human-readable format.
Source code in sleap_io/io/main.py
def save_skeleton(skeleton: Union[Skeleton, List[Skeleton]], filename: str | Path):
"""Save skeleton(s) to a JSON or YAML file.
Args:
skeleton: A single `Skeleton` or list of `Skeleton` objects to save.
filename: Path to save the skeleton file.
Notes:
This function saves skeletons in either JSON or YAML format based on the
file extension. JSON files use the jsonpickle format compatible with SLEAP,
while YAML files use a simplified human-readable format.
"""
if isinstance(filename, Path):
filename = str(filename)
# Detect format based on extension
if filename.lower().endswith((".yaml", ".yml")):
# YAML format
encoder = SkeletonYAMLEncoder()
yaml_data = encoder.encode(skeleton)
with open(filename, "w") as f:
f.write(yaml_data)
else:
# JSON format (default)
encoder = SkeletonEncoder()
json_data = encoder.encode(skeleton)
with open(filename, "w") as f:
f.write(json_data)